首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The kinetics of the forward ATP sulfurylase-catalyzed reaction were examined using a new assay based on 32PPi released from [gamma-32P]MgATP in the presence of inorganic sulfate. Replots yielded Vmaxf = 6.6 units mg protein-1, KmA = 0.13 mM, Kia = 0.33 mM, and KmB = 0.55 mM, where A = MgATP and B = SO2-4. Thiosulfate, a dead-end inhibitor of the reaction, was competitive with sulfate and noncompetitive with respect to MgATP. The ratio kcat/KmA was determined for several alternative inorganic substrates, B, where A = MgATP and B = SO2-4, SeO2-4, MoO2-4, WO2-4, or CrO2-4. For SO2-4 and SeO2-4, the ratio was 5-6.5 X 10(4) M-1 S-1; for the others, the ratio was 5.8-7.3 X 10(5) M-1 S-1. The results support a random addition of MgATP and inorganic substrate. The kinetics of the reverse reaction were examined using a new assay based on 35SO2-4 release from [35S]APS (adenosine 5'-phosphosulfate) in the presence of MgPPi. Reciprocal plots were linear, intersecting below the horizontal axis. Replots yielded Vmaxr = 50 units mg protein-1, KmQ = 0.3 microM, Kiq = 0.04 microM, and KmP = 4 microM, where Q = APS and P = PPi (total of all species). MgATP and SO2-4 were both competitive with APS and noncompetitive with respect to MgPPi. Taken together with earlier results suggesting that APS is competitive with both MgATP and SO2-4 and that MgPPi is noncompetitive with respect to both substrates, the qualitative results point to a random A-B, ordered P-Q kinetic mechanism. The Scatchard plot for [35S]APS binding was curved, indicating either negative cooperativity or more than a single class of sites. [gamma-32P]MgATP displayed half-site saturation in the presence of saturating FSO-3.  相似文献   

2.
ATP sulfurylase (ATP: sulfate adenylyltransferase, EC 2.7.7.4) was extensively purified from trophosome tissue of Riftia pachyptila, a tube worm that thrives in deep ocean hydrothermal vent communities. The enzyme is probably derived from the sulfide-oxidizing bacteria that densely colonize the tissue. Glycerol (20% v/v) protected the enzyme against inactivation during purification and storage. The native enzyme appears to be a dimer (MW 90 kDa +/- 10%) composed of identical size subunits (MW 48 kDa +/- 5%). At pH 8.0, 30 degrees C, the specific activities (units x mg protein-1) of the most highly purified sample are as follows: ATP synthesis, 370; APS synthesis, 23; molybdolysis, 65; APSe synthesis or selenolysis, 1.9. The Km values for APS and PPi at 5 mM Mg2+ are 6.3 and 14 microM, respectively. In the APS synthesis direction, the Km values for MgATP and SO4(2-) are 1.7 and 27 mM, respectively. The Km values for MgATP and MoO4(2-) in the molybdolysis reaction are 80 and 150 microM, respectively. The Kia for MgATP is 0.65 mM. APS is a potent inhibitor of molybdolysis, competitive with both MgATP and MoO4(2-) (Kiq = 2.2 microM). However, PPi (+ Mg2+) is virtually inactive as a molybdolysis inhibitor. Oxyanion dead end inhibitors competitive with SO4(2-) include (in order of decreasing potency) ClO4- greater than FSO3- (Ki = 22 microM) greater than ClO3- greater than NO3- greater than S2O3(2-) (Ki's = 5 and 43 mM). FSO3- is uncompetitive with MgATP, but S2O3(2-) is noncompetitive. Each subunit contains two free SH groups, at least one of which is functionally essential. ATP, MgATP, SO4(2-), MoO4(2-), and APS each protect against inactivation by excess 5,5'-dithiobis-(2-nitrobenzoate). FSO3- is ineffective as a protector unless MgATP is present. PPi (+Mg2+) does not protect against inactivation. Riftia trophosome contains little or no "ADP sulfurylase." The high trophosome level of ATP sulfurylase (67-176 ATP synthesis units x g fresh wt tissue-1 from four different specimens, corresponding to 4-10 microM enzyme sites), the high kcat of the enzyme for ATP synthesis (296 s-1), and the high Km's for MgATP and SO4(2-) are consistent with a role in ATP formation during sulfide oxidation, i.e., the physiological reaction is APS + MgPPi in equilibrium SO4(2-) + MgATP.  相似文献   

3.
Homogeneous ATP sulfurylase from Penicillium chrysogenum has been reported to have an extremely low activity toward its physiological inorganic substrate, sulfate. This low activity is an artifact resulting from potent product inhibition by 5'-adenylylsulfate (APS) (Ki less than 0.25 microM). Assays based on 35S incorporation from 35SO4(2-) into charcoal-adsorbable [35S]APS are nonlinear with time, even in the presence of a large excess of inorganic pyrophosphatase. However, in the presence of excess APS kinase (along with excess pyrophosphatase), the ATP sulfurylase reaction is linear with time and the enzyme has a specific activity (Vmax) of 6 to 7 units mg protein-1 corresponding to an active site turnover number of at least 400 min-1. Monovalent oxyanions such as NO3-, ClO3-, ClO4-, and FSO3- are competitive with sulfate (or molybdate) and essentially uncompetitive with respect to MgATP. However, thiosulfate (SSO3(2-)), a true sulfate analog and dead-end inhibitor of the enzyme (competitive with sulfate or molybdate), exhibited clear noncompetitive inhibition against MgATP. Furthermore, APS was competitive with both MgATP and molybdate in the molybdolysis assay. These results suggest (a) that the mechanism of the normal forward reaction may be random rather than ordered and (b) that the monovalent oxyanions have a much greater affinity for the E X MgATP complex than for free E. In this respect, FSO3-, ClO4-, etc., are not true sulfate analogs although they might mimic an enzyme-bound species formed when MgATP is at the active site. The nonlinear ATP sulfurylase reaction progress curves (with APS accumulating in the presence of excess pyrophosphatase or PPi accumulating in the presence of excess APS kinase) were analyzed by means of "average velocity" plots based on an integrated rate equation. This new approach is useful for enzymes subject to potent product inhibition over a reaction time course in which the substrate concentrations do not change significantly. The analysis showed that ATP sulfurylase has an intrinsic specific activity of 6 to 7 units mg protein-1. Thus, the apparent stimulation of sulfurylase activity by APS kinase results from the continual removal of inhibitory APS rather than from an association of the two sulfate-activating enzymes to form a "3'-phospho-5'-adenylylsulfate synthetase" complex in which the sulfurylase has an increased catalytic activity. The progress curve analyses suggest that APS is competitive with both MgATP and sulfate, while MgPPi is a mixed-type inhibitor with respect to both substrates. The cumulative data point to a random sequence for the forward reaction with APS release being partially rate limiting.  相似文献   

4.
Lansdon EB  Fisher AJ  Segel IH 《Biochemistry》2004,43(14):4356-4365
Recombinant human 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthetase, isoform 1 (brain), was purified to near-homogeneity from an Escherichia coli expression system and kinetically characterized. The native enzyme, a dimer with each 71 kDa subunit containing an adenosine triphosphate (ATP) sulfurylase and an adenosine 5'-phosphosulfate (APS) kinase domain, catalyzes the overall formation of PAPS from ATP and inorganic sulfate. The protein is active as isolated, but activity is enhanced by treatment with dithiothreitol. APS kinase activity displayed the characteristic substrate inhibition by APS (K(I) of 47.9 microM at saturating MgATP). The maximum attainable activity of 0.12 micromol min(-1) (mg of protein)(-1) was observed at an APS concentration ([APS](opt)) of 15 microM. The theoretical K(m) for APS (at saturating MgATP) and the K(m) for MgATP (at [APS](opt)) were 4.2 microM and 0.14 mM, respectively. At likely cellular levels of MgATP (2.5 mM) and sulfate (0.4 mM), the overall endogenous rate of PAPS formation under optimum assay conditions was 0.09 micromol min(-1) (mg of protein)(-1). Upon addition of pure Penicillium chrysogenum APS kinase in excess, the overall rate increased to 0.47 micromol min(-1) (mg of protein)(-1). The kinetic constants of the ATP sulfurylase domain were as follows: V(max,f) = 0.77 micromol min(-1) (mg of protein)(-1), K(mA(MgATP)) = 0.15 mM, K(ia(MgATP)) = 1 mM, K(mB(sulfate)) = 0.16 mM, V(max,r) = 18.7 micromol min(-1) (mg of protein)(-1), K(mQ(APS)) = 4.8 microM, K(iq(APS)) = 18 nM, and K(mP(PPi)) = 34.6 microM. The (a) imbalance between ATP sulfurylase and APS kinase activities, (b) accumulation of APS in solution during the overall reaction, (c) rate acceleration provided by exogenous APS kinase, and (d) availability of both active sites to exogenous APS all argue against APS channeling. Molybdate, selenate, chromate ("chromium VI"), arsenate, tungstate, chlorate, and perchlorate bind to the ATP sulfurylase domain, with the first five serving as alternative substrates that promote the decomposition of ATP to AMP and PP(i). Selenate, chromate, and arsenate produce transient APX intermediates that are sufficiently long-lived to be captured and 3'-phosphorylated by APS kinase. (The putative PAPX products decompose to adenosine 3',5'-diphosphate and the original oxyanion.) Chlorate and perchlorate form dead-end E.MgATP.oxyanion complexes. Phenylalanine, reported to be an inhibitor of brain ATP sulfurylase, was without effect on PAPS synthetase isoform 1.  相似文献   

5.
Adenosine 5'-phosphosulfate (APS) kinase, the second enzyme in the pathway of inorganic sulfate assimilation, was purified to near homogeneity from mycelium of the filamentous fungus, Penicillium chrysogenum. The enzyme has a native molecular weight of 59,000-60,000 and is composed of two 30,000-dalton subunits. At 30 degrees C, pH 8.0 (0.1 M Tris-chloride buffer), 5.5 microM APS, 5 mM MgATP, 5 mM excess MgCl2, and "high" salt (70-150 mM (NH4)2SO4), the most highly purified preparation has a specific activity of 24.7 units X mg of protein-1 in the physiological direction of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) formation. This activity is nearly 100-fold higher than that of any previously purified preparation of APS kinase. APS kinase is subject to potent substrate inhibition by APS. In the absence of added salt, the initial velocity at 5 mM MgATP plus 5 mM Mg2+ is maximal at about 1 microM APS and half-maximal at 0.2 and 4.4 microM APS. In the presence of 200 mM NaCl or 70-150 mM (NH4)2SO4, the optimum APS concentration shifts to 4-6 microM APS; the half-maximal values shift to 1-1.3 and 21-27 microM APS. The steady state kinetics of the reaction were investigated using a continuous spectrophotometric assay. The families of reciprocal plots in the range 0.25-5 mM MgATP and 0.8-5.1 microM APS are linear and intersect on the horizontal axis. Appropriate replots yield KmMgATP = 1.5 mM, KmAPS = 1.4 microM, and Vmax, = 38.7 units X mg of protein-1. Excess APS is an uncompetitive inhibitor with respect to MgATP (K1APS = 23 microM). PAPS, the product of the forward reaction, is also uncompetitive with MgATP. PAPS is not competitive with APS. In the reverse direction, the plots have the characteristics of a rapid equilibrium ordered sequence with MgADP adding before PAPS. The kinetic constants are KmPAPS = 8 microM, KiMgADP = 560 microM, and Vmaxr = 0.16 units X mg of protein-1. Iso-PAPS (the 2'-phosphate isomer of PAPS) is competitive with PAPS and uncompetitive with respect to MgADP (Ki = 6 microM). APS kinase is inactivated by phenylglyoxal, suggesting the involvement of an essential argininyl residue. MgATP or MgADP at 10 Ki protect against inactivation. APS or PAPS at 600 and 80 Km, respectively, are ineffective alone, but provide nearly complete protection in the presence of 0.1 Ki of MgADP or MgATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A continuous, coupled, spectrophotometric assay is described in which the enzyme ATP sulfurylase is employed to measure the concentration of inorganic pyrophosphate (PPi) at equilibrium with known concentrations of inorganic orthophosphate (Pi) in the presence of excess inorganic pyrophosphatase (PPitase). In agreement with previous reports, the apparent equilibrium constant (Keq,app) of the PPi hydrolysis reaction was shown to decrease as the concentration of Mg2+ is increased. At pH 7.3, 30 degrees C, in the presence of 150 mM NaCl and 1 mM free Mg2+, Keq,app (calculated as [Pi]t2/[PPi]t) was 1950. Measurements of Keq,app at different total concentrations of Mg2+ and Pi permitted the determination of K0, the dissociation constant of the Mg-Pi complex. In 0.05 M Tris-Cl, pH 8.0, at 30 degrees C, K0 was 3.6 mM. In the presence of excess ATP sulfurylase, yeast PPitase catalyzed PPi formation from Pi with a specific activity (Vmax) of 9 units X mg protein-1 at pH 8.0, 30 degrees C, and 1 mM free Mg2+. Half-maximum reverse reaction velocity was observed at a total Pi concentration of 18 mM. (Under the same conditions, Vmax of the PPi hydrolysis reaction was 530 units X mg protein-1.) A radiochemical end point ("reaction-to-completion") assay for measuring unknown concentrations of PPi was devised. In the presence of excess 35S-adenosine-5'-phosphosulfate ([35S]APS) as the cosubstrate, 35SO2-4 formation was stoichiometric with added PPi. (The 35SO2-4 and [35S]APS are separated by adsorption of the latter onto charcoal.) The sensitivity of the assay can be adjusted by varying the specific radioactivity of the [35S]APS. In the absence of interfering substances, as little as 2 pmol of PPi per 1.0 ml assay volume can be measured. The sensitivity of the assay is reduced in the presence of ATP plus perchlorate (which synergistically inhibit the enzyme). However, if the bulk of the ATP is removed from perchloric acid extracts of tissues with glucose and hexokinase, initial intracellular levels as low as 1 microM can be measured. The possibility that most of the cellular PPi extracted with perchloric acid was originally enzyme bound is discussed.  相似文献   

7.
ATP sulfurylase from Penicillium chrysogenum is a homohexamer that contains three free sulfhydryl groups/subunit, only one of which (designated SH-1) can be modified by disulfide, maleimide, and halide reagents under nondenaturing conditions. Modification of SH-1 has only a small effect on kcat but causes the [S]0.5 values for MgATP and SO4(2-) (or MoO4(2-) to increase by an order of magnitude. Additionally, the velocity curves become sigmoidal with a Hill coefficient (nH) of about 2 (Renosto, F., Martin, R. L., and Segel, I. H. (1987) J. Biol. Chem. 262, 16279-16288). Direct equilibrium binding measurements confirmed that [32P]MgATP binds to the SH-modified enzyme in a positively cooperative fashion (nH = 2.0) if a sulfate subsite ligand (e.g. FSO3-) is also present. [35S]Adenosine 5'-phosphosulfate (APS) binding to the SH-modified enzyme displayed positive cooperativity (nH = 1.9) in the absence of a PPi subsite ligand. The results indicate that positive cooperativity requires occupancy of the adenylyl and sulfate (but not the pyrophosphate) subsites. [35S]APS binding to the native enzyme displayed negative cooperativity (or binding to at least two classes of sites). Isotope trapping profiles for the single turnover of [35S]APS: (a) confirmed the equilibrium binding curves, (b) indicated that all six sites/hexamer are catalytically active, and (c) showed that APS does not dissociate at a significant rate from E.APS.PPi. The MgPPi concentration dependence of [35S]APS trapping was indicative of MgPPi binding to two classes of sites on both the native and SH-modified enzyme. Inactivation of the native or SH-modified enzyme by phenylglyoxal in the presence of saturating APS was biphasic. The semilog plots suggested that only half of the sites were highly protected. The cumulative data suggest a model in which pairs of sites or subunits can exist in three different states designated HH (both sites have a high APS affinity, as in the native free enzyme), LL (both sites have a low APS affinity as in the SH-modified enzyme), and LH (as in the APS-occupied native or SH-modified enzyme). Thus, the HH----LH transition displays negative cooperativity for APS binding while the LL----LH transition displays positive cooperativity. The relative reactivities of like-paired SH-reactive reagents were in the order: N-phenylmaleimide greater than N-ethylmaleimide; dithionitropyridine greater than dithionitrobenzoate; thiolyte-MQ greater than thiolyte-MB. The log kmod versus pH curve indicates that the pKa of SH-1 is greater than 9.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We have studied the inhibition of the contraction of glycerinated rabbit psoas muscle caused by ligands that bind to the ATPase site of myosin. Two ligands, adenosine 5' (beta, gamma-imido) triphosphate (AMPPNP) and pyrophosphate (PPi), decreased the force and stiffness developed in isometric contractions and the velocity of shortening of isotonic contractions. The force exerted by isometric fibers was measured as a function of MgATP in the presence and absence of a constant concentration of the ligands. As the MgATP concentration decreased, the inhibition of tension caused by the ligand increased, reaching approximately 50% at 25 microM MgATP and either 2 mM MgPPi or 2 mM MgAMPPNP. The maximum velocity of shortening was also measured as a function of MgATP concentration in the presence of 1 and 2 mM MgPPi and 2.5 and 5 mM MgAMPPNP. Both ligands acted as pure competitive inhibitors with Ki = 3.0 mM for PPi and 5.1 mM for MgAMPPNP. These data show that both ligands are weak inhibitors of the contraction of fibers. The results provided information on the energetics of actin-myosin-ligand states that occur in the portion of the cross-bridge cycle where MgATP binds to myosin. A simple analysis of the inhibition of velocity suggests that MgAMPPNP binds to the actomyosin complex at this step of the cycle with an effective affinity constant of approximately 2 X 10(2) M-1.  相似文献   

9.
ATP sulfurylase from Penicillium chrysogenum is a homohexameric enzyme that is subject to allosteric inhibition by 3'-phosphoadenosine 5'-phosphosulfate. In contrast to the wild type enzyme, recombinant ATP sulfurylase lacking the C-terminal allosteric domain was monomeric and noncooperative. All kcat values were decreased (the adenosine 5'-phosphosulfate (adenylylsulfate) (APS) synthesis reaction to 17% of the wild type value). Additionally, the Michaelis constants for MgATP and sulfate (or molybdate), the dissociation constant of E.APS, and the monovalent oxyanion dissociation constants of dead end E.MgATP.oxyanion complexes were all increased. APS release (the k6 step) was rate-limiting in the wild type enzyme. Without the C-terminal domain, the composite k5 step (isomerization of the central complex and MgPPi release) became rate-limiting. The cumulative results indicate that besides (a) serving as a receptor for the allosteric inhibitor, the C-terminal domain (b) stabilizes the hexameric structure and indirectly, individual subunits. Additionally, (c) the domain interacts with and perfects the catalytic site such that one or more steps following the formation of the binary E.MgATP and E.SO4(2-) complexes and preceding the release of MgPPi are optimized. The more negative entropy of activation of the truncated enzyme for APS synthesis is consistent with a role of the C-terminal domain in promoting the effective orientation of MgATP and sulfate at the active site.  相似文献   

10.
ATP sulfurylase from the hyperthermophilic chemolithotroph Aquifex aeolicus is a bacterial ortholog of the enzyme from filamentous fungi. (The subunit contains an adenosine 5'-phosphosulfate (APS) kinase-like, C-terminal domain.) The enzyme is highly heat stable with a half-life >1h at 90 degrees C. Steady-state kinetics are consistent with a random A-B, ordered P-Q mechanism where A=MgATP, B=SO4(2-), P=PP(i), and Q=APS. The kinetic constants suggest that the enzyme is optimized to act in the direction of ATP+sulfate formation. Chlorate is competitive with sulfate and with APS. In sulfur chemolithotrophs, ATP sulfurylase provides an efficient route for recycling PP(i) produced by biosynthetic reactions. However, the protein possesses low APS kinase activity. Consequently, it may also function to produce PAPS for sulfate ester formation or sulfate assimilation when hydrogen serves as the energy source and a reduced inorganic sulfur source is unavailable.  相似文献   

11.
Adenosine 5′-triphosphate sulphurylase from Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
1. ATP sulphurylase from Saccharomyces cerevisiae was purified 140-fold by using heat treatment, DEAE-cellulose chromatography and Sepharose 6B gel filtration. 2. The enzyme was stable at -15 degrees C, optimum reaction velocity was between pH7.0 and 9.0, and the activation energy was 62kJ/mol (14.7kcal/mol). 3. The substrate was shown to be the MgATP(2-) complex, free ATP being inhibitory. 4. Double-reciprocal plots from initial-velocity studies were intersecting and the K(m) of each substrate was determined at infinite concentration of the other (K(m) MgATP(2-), 0.07mm; MoO(4) (2-), 0.17mm). 5. Radio-isotopic exchange between the substrate pairs, adenosine 5'-[(35)S]sulphatophosphate and SO(4) (2-), (35)SO(4) (2-) and adenosine 5'-sulphatophosphate, occurred only in the presence of either MgATP(2-) or PP(i). This suggests, along with the initial-velocity data, a sequential reaction mechanism in which both substrates bind before any product is released. 6. The enzyme reaction was specific for ATP and was not inhibited by l-cysteine, l-methionine, SO(3) (2-), S(2)O(3) (2-) (all 2mm) nor by p-chloromercuribenzoate (1mm). 7. Competitive inhibition of the enzyme with respect to MoO(4) (2-) was produced by SO(4) (2-) (K(i)=2.0mm) and non-competitive inhibition by sulphide (K(i)=3.4mm). 8. Adenosine 5'-sulphatophosphate inhibited strongly and concentrations as low as 0.02mm altered the normal hyperbolic velocity-substrate curves with both MgATP(2-) and MoO(4) (2-) to sigmoidal forms.  相似文献   

12.
Effects of the non-hydrolyzable nucleotide analogue magnesium pyrophosphate (MgPPi) on cross-bridge properties were investigated in skinned smooth muscle of the guinea pig Taenia coli. A "high" rigor state was obtained by removing MgATP at the plateau of an active contraction. Rigor force decayed slowly towards an apparent plateau of approximately 25-35% of maximal active force. MgPPi markedly increased the rate of force decay. The initial rate of the force decay depended on [MgPPi] and could be described by the Michaelis-Menten equation with a dissociation constant of 1.6 mM. The decay was irreversible amounting to approximately 50% of the rigor force. Stiffness decreased by 20%, suggesting that the major part of the cross-bridges were still attached. The results can be interpreted as "slippage" of PPi-cross-bridges to positions of lower strain. The initial rate of MgPPi-induced force decay decreased with decreasing ionic strength in the range 45-150 mM and was approximately 25% lower in thiophosphorylated fibers. MgADP inhibited the MgPPi-induced force decay with an apparent Ki of 2 microM. The apparent Km of MgATP for the maximal shortening velocity in thiophosphorylated fibers was 32 microM. This low Km of MgATP suggests that steps other than MgATP-induced detachment are responsible for the low shortening velocity in smooth muscle. No effects were observed of 4 mM MgPPi on the force-velocity relation, suggesting that cross-bridges with bound MgPPi do not constitute an internal load or that binding of MgPPi is weaker in negatively strained cross-bridges during shortening.  相似文献   

13.
The mechanism by which SO4(2-) is transported across the plasma membrane of isolated human neutrophils was investigated. Unlike the situation in erythrocytes, SO4(2-) and other divalent anions are not substrates for the principal Cl-/HCO3- exchange system in these cells. At an extracellular concentration of 2 mM, total one-way 35SO4(2-) influx and efflux in steady-state cells amounted to approximately 17 mumol/liter of cell water per min. The intracellular SO4(2-) content was approximately 1 mM, approximately 25-fold higher than the passive distribution level. Internal Cl- trans stimulated 35SO4(2-) influx. Conversely, 35SO4(2-) efflux was trans stimulated by external Cl- (Km approximately 25 mM) and by external SO4(2-) (Km approximately 14 mM), implying the presence of a SO4(2-)/Cl- countertransport mechanism. The exchange is noncompetitively inhibited by 4-acetamido-4'-isothiocyanostilbene-2,2' -disulfonate (SITS) (Ki approximately 50 microM) and competitively blocked by alpha-cyano-4-hydroxycinnamate (Ki approximately 230 microM) and by ethacrynate (Ki approximately 7 microM); furosemide and probenecid also suppressed activity. The carrier exhibits broad specificity for a variety of monovalent (NO3- approximately Cl- greater than Br- greater than formate- greater than I- approximately p-aminohippurate-) and divalent WO4(2-) greater than oxalate2- greater than SO4(2-) greater than MoO4(2-) greater than SeO4(2-) greater than AsO4(2-) anions. There was little, if any, affinity for HCO3-, phosphate, or glucuronate. The influx of SO4(2-) is accompanied by an equivalent cotransport of H+, the ion pair H+ + SO4(2-) being transported together in exchange for Cl-, thereby preserving electroneutrality. These findings indicate the existence of a separate SO4(2-)/Cl- exchange carrier that is distinct from the neutrophil's Cl-/HCO3- exchanger. The SO4(2-) carrier shares several properties in common with the classical inorganic anion exchange mechanism of erythrocytes and with other SO4(2-) transport systems in renal and intestinal epithelia, Ehrlich ascites tumor cells, and astroglia.  相似文献   

14.
Initial rates of PPi hydrolysis by cytosolic and mitochondrial inorganic pyrophosphatases of rat liver have been measured in the presence of 0.2-100 microM MgPPi and 0.01-50 mM Mg2+ at pH 7.2 to 9.3. The apparently simplest model consistent with the data for both enzymes implies that they bind substrate, in the form of MgPPi, and three Mg2+ ions, of which two are absolutely required for activity. The third metal ion facilitates substrate binding but decreases maximal velocity for the cytosolic enzyme, while substrate binding is only modulated for the mitochondrial enzyme. The model is also applicable to bovine heart mitochondrial pyrophosphatases. The active form of the substrate for the cytosolic pyrophosphatase is MgP2O7(-2); the catalytic and metal-binding steps require a protonated group with pKa = 9.2 and an unprotonated group with pKa = 8.8, respectively. The results indicate that the mitochondrial pyrophosphatase is more sensitive to variations of Mg2+ concentration in rat liver cells than is the cytosolic one.  相似文献   

15.
An improved procedure for the purification of pig liver mevalonate kinase (ATP:mevalonate 5-phosphotransferase, EC 2.7.1.36) is described. A high-voltage electrophoresis assay was developed for mevalonate kinase. The procedure separates mevalonate from phosphomevalonate and also from diphosphomevalonate so that it can be used to measure the subsequent enzyme, phosphomevalonate kinase (EC 2.7.4.2). The assay has allowed the reassessment of the metal ion and nucleotide specificity of the pig liver enzyme. Some of the previously reported properties reflected those of the enzymes in the coupling assay rather than mevalonate kinase itself. A series of compounds were tested as activators or inhibitors of mevalonate kinase. It was found that ATP4-, arsenate and, to a smaller extent, inorganic phosphate activated the enzyme. At fixed MgATP2- (1 mM) concentrations the activation of mevalonate kinase by free ATP4- at pH 8.0 was observed at concentrations at up to 10-fold that of MgATP2- before causing any inhibition. The presence of free ATP4- resulted in a biphasic Lineweaver-Burke plot with apparent Km values for MgATP2- being 0.14 mM and 60 microM, respectively. Fluorescence measurements were consistent with the notion that the binding of excess ATP4- to the enzyme caused a conformational change.  相似文献   

16.
[35S]Adenosine-5'-phosphosulfate (APS) binding to Penicillium chrysogenum APS kinase was measured by centrifugal ultrafiltration. APS did not bind to the free enzyme with a measurable affinity even at low ionic strength where substrate inhibition by APS is quite marked. However, APS bound with an apparent Kd of 0.54 microM in the presence of 5 mM MgADP. In the presence of 0.1 M (NH4)2SO4, Kd,app was increased to 2.1 +/- 0.7 microM. Bound [35S]APS was displaced by low concentrations of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), or iso-(2') PAPS, or (less efficiently) by adenosine-3,5'-diphosphate (PAP) or adenosine-5'-monosulfate (AMS). The results support our conclusion that substrate inhibition of the fungal enzyme by APS results from the formation of a dead end E. MgADP.APS complex. That is, APS binds to the subsite vacated by PAPS in the compulsory (or predominately) ordered product release sequence (PAPS before MgADP). Radioligand displacement was used to verify the Kd for APS dissociation from E.MgADP.APS and to determine the Kd values for the dissociation of iso-PAPS (13 +/- 5 microM), PAP (4.8 mM), or AMS (5.2 mM) from their respective ternary enzyme.MgADP.ligand complexes. Incubation of the fungal enzyme with [gamma-32P]MgATP did not yield a phosphoenzyme that survives gel filtration or gel electrophoresis.  相似文献   

17.
Kinetic and binding studies of yeast inorganic pyrophosphatase (EC 3.6.1.1) revealed a regulatory PPi-binding site. Rate vs substrate concentration dependencies were markedly nonhyperbolic in the range of 0.1-150 microM MgPPi at fixed Mg2+ levels of 0.05-10 mM provided that the enzyme had been preequilibrated with Mg2+. Imidodiphosphate, hydroxymethylenebisphosphonate, and phosphate eliminated the deviations from the Michaelis-Menten kinetics and inhibited PPi hydrolysis in a manner consistent with their binding at both active and regulatory sites. The results agreed with a model in which binding of uncomplexed PPi at the regulatory site markedly increases enzyme affinity for the activating Mg2+ ion. Ultrafiltration studies revealed the binding of at least 3 mol of the inhibitory hydroxymethylenebisphosphonate and of 2 mol of noninhibitory methylenebisphosphonate per mole of the dimeric enzyme.  相似文献   

18.
ATP sulfurylase was purified extensively from green cabbage (Brassica capitata L.) leaf. The enzyme appears to be an asymmetric dimer composed of 57,000 dalton subunits. Initial velocity and product inhibition studies of the forward and reverse reactions point to an obligately ordered kinetic mechanism with MgATP adding before MoO42− (or SO42−). and MgPPi leaving before AMP + MoO42− (or adenosine-5′-phosphosulfate [APS]). The addition of excess purified fungal APS kinase to assay mixtures increased the rate of 35SO42− incorporation and MgPPi formation and extended the linearity of the forward reaction. This effect can be ascribed to the continual removal of APS, a potent product inhibitor of ATP sulfurylase. The specific activities of the enzyme in the APS synthesis, molybdolysis, MgATP synthesis, and sulfate-dependent [32P]-MgPPi-MgATP exchange assays were 3.3, 38, 38, and 4.3 micromole product formed per minute per milligram protein, respectively.  相似文献   

19.
A method is described that allows the determination of kinetic parameters for carrier-mediated transport of unlabelled compounds. The ability of these compounds to relieve the inhibition of labelled substrate efflux produced by addition of an external competitive inhibitor is studied. The method is of general applicability and does not depend upon any intrinsic asymmetry in the ratio of the rates of translocation of the loaded and unloaded carrier. In this paper it is used in a study of the human placental sulphate transporter. Experiments on brush-border membrane vesicles show the method to predict quantitatively kinetic parameters for unlabelled sulphate entry. Further analysis shows this carrier to have a broad specificity for other oxyanions (selenate, tung-state, molybdate and chromate) with the following selectivity sequence: for rate of translocation, SO4, SeO4 greater than WO4 greater than MoO4 much greater than CrO4; for binding affinity, CrO4 greater than MoO4, WO4 greater than SO4, SeO4.  相似文献   

20.
ATP sulfurylase catalyzes the synthesis of ATP from adenosine 5'-phosphosulfate and magnesium pyrophosphate with inversion of configuration at phosphorus. This implies an "in line" displacement mechanism in the ternary complex and effectively eliminates both an adjacent mechanism followed by pseudorotation and a double displacement mechanism involving an adenylyl-enzyme intermediate. The double displacement mechanism had been invoked previously to account for a number of observations, including the ability of the enzyme to catalyze the hydrolysis of MgATP to AMP and MgPPi, and the exchange of Mg32PPi into MgATP in the absence of sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号