首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insects are capable of producing strongly hyperosmotic urinebut most species do not possess the anatomical equivalent ofthe mammalian kidney's couiitercurrent system. Concentrationof the excreta occurs in the rectum where water is absorbedagainst increasing osmotic gradients without strict dependenceon simultaneous absorption of solute. Properties of this processare reviewed. It is currently postulated that this apparenttransport of water is driven by local transport and recyclingof solute within the lateral intercellular spaces of the epitheliumof the rectal pad. The most concentrated excreta so far reported are those of themealworm, Tenebrio molitor. This species possesses a cryptonephridialcomplex in which the posterior end of the malpighian tubulesis closely applied to the rectum and both are enclosed withina complex membranous sheath. Active transport of potassium chlorideby the malpighian tubules into the complex creates a local highosmotic pressure within the complex which is responsible, inpart if not completely, for removal of water from the rectallumen. This system bears some resemblance to the countercurrentsystem of the mammalian kidney.  相似文献   

2.
The hindgut of cicadoid and cercopoid insects consists of a very long ileum and a relatively short rectum. The ileum is a single cell epithelium comprising several large primary cells between which are small secondary cells. Primary cells are packed with spherical mitochondria and the apical surface of the cells is extensively infolded to form leaflets, whilst the secondary cells are relatively unspecialized. An ATPase appears to be associated with the apical leaflets and small basal infoldings. These cells are presumed to be engaged in ion reabsorption and the formation of a hypoosmotic urine. It is suggested that apical leaflets may be a common feature of all cells concerned with ion reabsorption in the insect hindgut. The cells of the rectum do not appear to be specialized for either ion or water transport and the function of this organ appears to be urine storage.  相似文献   

3.
In the so-called "cryptonephric" condition of the excretory system in insects the distal ends of the Malpighian tubules are closely applied to the rectum and enclosed with it in a special chamber, the perinephric space, separated from the rest of the body cavity by the perinephric membrane. The term "rectal complex" refers to this association of tubules and rectum, which is found in the larvae (but not in the adults) of most Lepidoptera. In the mealworm (Coleoptera) the rectal complex has notable ability to remove water from the faeces, but this ability is not conspicuously developed in the larvae of the two species of Lepidoptera here studied: Pieris brassicae and Manduca sexta. On the other hand these larvae have notable ability to maintain salt balance under heavy dietary loading, and in this the rectal complex plays an important part. A study of salt balance in more detail has shown that more sodium can be eliminated in the faeces than enters the rectal complex from the intestine. Consideration of other possible routes of entry points strongly to the Malpighian tubules. Superimposed upon a new flow of tubule fluid out of the rectal complex there is a tidal flow, brought about by the rectal musculature and amplified by dilatations of the cryptonephric tubules, which could bring in fluid from the free tubules and afford opportunity for the uptake of salts. Evidence is presented in support of this view. This tidal flow of tubule fluid and uptake of salts could be the basis of the build-up of high osmolarity in the perinephric fluid and could contribute to the removal of water from the faeces. It could also be the basic mechanism in the mealworm, the leptophragmal mechanism being superimposed upon it.  相似文献   

4.
The role of phosphorus (P) in numerous important biological structures, coupled with the observation that P-content of many insect foods is disproportionately low, suggests that P may be a critical nutrient for growing insects — however, the few studies examining the effects of dietary P on insect performance have generally found only weak relationships. This mismatch may be reconciled by understanding the physiological mechanisms by which insects handle P. Here we describe P processing by larvae of Manduca sexta. When given un-manipulated leaves of a common host plant, Datura wrightii, fifth-instar larvae retained about 85% of P consumed; when given P-enriched leaves larvae retained only 25% of P consumed. Analysis of gut concentrations of P at four sites along the digestive tract, and in leaves and feces, indicates that the rectum is the primary site of P transport between the gut and body and that differences in P retention may be accounted for by differential rates of rectal P transport. Larvae given P-enriched leaves also showed an eightfold increase in the concentration of P in the hemolymph, primarily as α-glycerophosphate — but only a 12% increase in the concentration of P in body tissues, suggesting that hemolymph plays a central role in storage and buffering of P.  相似文献   

5.
Birds are a diverse vertebrate class in terms of diet and habitat, but they share several common physiological features, including the use of uric acid as the major nitrogenous waste product and the lack of a urinary bladder. Instead, ureteral urine refluxes from the urodeum into the more proximal coprodeum and portions of the hindgut (colon or rectum and ceca). This presents a potential problem in that hyperosmotic ureteral urine in contact with the permeable epithelia of these tissues would counteract renal osmotic work. This review describes and provides examples of different strategies used by avian species to balance renal and post-renal changes in urine composition. The strategies described include: 1. a "reptilian" mode, with moderate renal concentrating ability, but high rates of post-renal salt and water resorption; 2. the "mammalian" strategy, in which the coprodeum effectively functions like a mammalian urinary bladder, preserving the osmotic concentrating work of the kidney; 3. an interaction strategy, in which post-renal transport processes are hormonally regulated in order to optimize renal function under varying conditions of salt or water stress; 4. the salt gland strategy seen in marine or estuarine birds with functional salt glands, in which post-renal transport mechanisms are used to conserve urinary water and to recycle excess NaCl to the nasal salt glands. Finally, we also describe some features of an as-yet unstudied group of birds, the birds of prey. At least some species in this group are relatively good renal concentrators, and would be predicted to have post-renal mechanisms to preserve this work. This new synthesis illustrates the marked diversity of adaptive mechanisms used by avian species to maintain osmotic homeostasis.  相似文献   

6.
Tapinoma erraticum workers change their nest site if disturbed. Fewer than half of them displace the brood, with varying degrees of efficiency. In order to determine individual reactivity, the following measurements were carried out on each ant during a removal test: (1) seizures of larvae with the mandibles, (2) journeys between the two nests, (3) functional transports.A large number of seizures and a more rapid transport response are poorly correlated with high removal activity. In this situation, the journeys made between the two nests appear independent of transport activity. Each transporting worker was observed to show a characteristic transport rate which may vary during the test period. The extreme heterogeneity of all aspects of individual responses illustrates the probabilistic nature of the behaviour of social insects.  相似文献   

7.
Temperature is a primary determinant of insect and other ectotherm distribution and activity. Physiological and behavioral adaptations allow many insects to survive at subzero temperatures, yet the evolutionary influences on insect cold tolerance are unclear. Supercooling points, basal cold tolerance, cold-tolerance strategy, and inducible cold tolerance from rapid cold-hardening or acclimation were measured in a phylogenetically independent context in larvae of 27 phylogenetically diverse Drosophila species acquired from stock collections. Supercooling capacity is attributed primarily to physical factors, such as dry mass and water mass. Species of the obscura group were more resistant to acute cold tolerance than species of other groups within the genus, and plasticity in cold tolerance is constrained by phylogeny rather than by basal cold tolerance. The more cold-tolerant freeze-avoiding species appear to have arisen multiple times in Drosophila and are distinct from chill-susceptible species, which likely indicate the ancestral state. A phylogenetic influence is apparent on several measures of cold tolerance, which show considerable interspecific variation and indicate varying physiological mechanisms among Drosophila species when temperature limits are met.  相似文献   

8.
The larvae of Coenagrion puella possess 3, and the larvae of Aeshna cyanea up to 486 rectal chloride epithelia which in both species are organized as transporting epithelia. Combined applications of the histochemical chloride precipitation technique, energy-dispersive micro-analysis of X-rays, autoradiography, and scintillation counting on A. cyanea revealed that the chloride epithelia adsorb chloride from the external solution. By use of radioactive sodium and chloride in hypotonic concentrations applied on normal and anus-sealed larvae it was demonstrated that the rectum of both species is the main pathway for salt uptake into the haemolymph. The stepwise increase in external osmolarity by the addition of mannitol results in a concomitant reduction of chloride uptake into the haemolymph. These results suggest that the rectal chloride epithelia are involved in hyperosmotic regulation by the absorption of salt from the external medium.  相似文献   

9.
Euryhaline fish possess the ability to compensate for environmental salinity changes through hydro-mineral regulation. A number of proteins have been studied in order to understand water and ion exchanges, known as fish osmoregulation. Sea-bass (Dicentrarchus labrax) cDNA sequences encoding a homologue of mammalian aquaporin (termed AQP1) and a homologue of mammalian aquaglyceroporin (termed AQP3) have been isolated and sequenced. The aquaporin amino acid sequences share respectively more than 60% and 65% identity with other known aquaporins. We have shown that salinity influences aquaporin expression levels in the gill, kidney and digestive tract, the main osmoregulatory organs. AQP1 may have a major osmoregulatory role in water transport in kidney and gut in SW-acclimated fish, whereas AQP3 could be implicated in gill water transport in FW-acclimated fish.  相似文献   

10.
The ultrastructure of the Malpighian tubules, ileum, rectum, anal canal, and anal papillae of larvae of the mosquito Culiseta inornata was examined. The Malpighian tubules, rectum, and anal papillae have many of the ultrastructural features characteristic of ion transport tissues, i.e., elaboration of the basal and apical membranes and a close association of these membranes with mitochondria. The Malpighian tubules possess two cell types, primary and stellate. The larval rectum of C. inornata is composed of a single segment containing a homogenous population of cells. In this respect, the larval rectum of C. inornata is distinct from that of saline-water species of Aedes. The cells in the larval rectum of C. inornata, however, closely resemble those of one cell type, the anterior rectal cells, of the saline-water mosquito Aedes campestris with regard to cell and nuclear size, the percentage of the cell occupied by apical folds, and mitochondrial density and distribution. No similarities can be found between the rectum of C. inornata and the posterior segment of the saline-water Aedes, which functions as a salt gland. On this basis, we have postulated that the rectum of C. inornata does not function as a site of hyperosmotic fluid secretion. The ultrastructure of the anal papillae of C. inornata is consistent with a role in ion transport. The significance of these findings to comparative aspects of osmoregulatory strategies in mosquito larvae is discussed.  相似文献   

11.
Aquaporin-mediated fluid regulation in the inner ear   总被引:6,自引:0,他引:6  
1. The sensory functions of the inner ear (hearing and balance) critically depend on the precise regulation of two fluid compartments of highly desparate ion composition, i.e., the endolymph and the perilymph.2. The parameters volume, ion composition, and pH need to be held athomeostasis irrespective of the hydration status of the total organism.3. Specific cellular water channels, aquaporins, have been shown to be essential for the fluid regulation of several organs, e.g., kidney, lung, and brain.4. Because of functional similarities of water regulation in the kidney and inner ear this review initially summarizes some aquaporin functions in the kidney and then focuses on 6 out of 11 mammalian aquaporins that are present in the inner ear (AQP1-6).5. Their potential role in the inner ear fluid control will be discussed on the basis of the respective expression patterns and individual pore properties.6. Further, a working model is presented of how the endolymphatic sac may contribute to inner ear fluid regulation.  相似文献   

12.
The anterior (ileum) and posterior (rectum) segments of locusthindgut constitute the reabsorptive part of the locust excretorysystem. They are functionally analogous to the proximal convolutedtubule and more distal parts, respectively, of the mammaliankidney tubule. Transport mechanisms are well understood in therectum, and an epithelial model has been proposed. Electrogenicactive absorption of Cl at the apical membrane drivesK+ transport (electrical coupling) and hence fluid transport(Jv). A partially purified neuropeptide (CTSH) from the CorpusCardiacum (CC) stimulates KC1 transport, and therefore presumablyfluid absorption via cAMP as second messenger. Another neuropeptide(purified and sequenced) from locust CC, neuroparsins, is reportedto stimulate rectal Jv via the inositol triphosphate (Ca2+)system, but actions on ion transport processes are unknown There is considerable similarity of transport processes in locustileum and rectum. A neuropeptide (ITP) acting on the ileum hasbeen purified and partially sequenced from locust CC (storagelobe). ITP has high sequence homology with a family of crustaceanneuropeptides. ITP, apparently acting via cAMP, stimulates ilealreabsorption of Cl, K+, Na+ and fluid by several-fold.It also inhibits active H+ secretion in the ileum, a processinvolved in hemolymph acid-base regulation. ITP has negligibleeffectson rectal transport processes. Thus separate neuropeptides apparentlycontrol transportevents in locust ileum and rectum.  相似文献   

13.
Lepidopteran insects like Helicoverpa zea and Agrotis ipsilon produce STI-insensitive trypsins in the midgut following ingestion of dietary plant proteinase inhibitors like STI [Broadway, R. M., J. Insect Physiol. 43(9) (1997) 855-874]. In this paper, the effects of dietary STI on a related family of midgut serine proteinases, the chymotrypsins, were investigated. STI-insensitive midgut chymotrypsins were detected in larvae of H. zea and A. ipsilon feeding on diets containing 1% STI while STI-sensitive chymotrypsins were present in larvae feeding on diets containing 0% STI. These chymotrypsins were unaffected by TPCK, a diagnostic inhibitor of mammalian chymotrypsins but were fully inhibited by chymostatin. Four midgut cDNA libraries were constructed from larvae of each species fed either 0% STI or 1% STI diets. Six full-length cDNAs(1) encoding diverse preprochymotrypsins were isolated (three from H. zea and three from A. ipsilon) with certain sequence motifs that set them apart from their mammalian counterparts. Northern blots showed that some chymotrypsin mRNA were detected at higher levels while others were down-regulated when comparing insects reared on 0% STI and 1% STI diets. Southern hybridizations suggested that (like mammals) both species contained several chymotrypsin genes. A full-length chymotrypsin gene(1) from H. zea was sequenced for the first time and the presence of four introns was deduced. A first time comparison of 5' upstream regions(1) from three chymotrypsin genes and two trypsin genes of A. ipsilon indicated the presence of putative TATA boxes and regulatory elements. However a lack of consensus motifs in these upstream regions suggested the likelihood of multiple trans factors for regulation of genes encoding digestive proteinases and a complex response mechanism linked to ingestion of proteinase inhibitors.  相似文献   

14.
In all animals, lipoproteins are used to transport lipids through the aqueous circulation. Lipids are delivered to mammalian cells by two different mechanisms: via endocytic uptake of the complete lipoprotein particle mediated by members of the low density lipoprotein (LDL) receptor (LDLR) family, or by selective delivery of lipoprotein-carried lipids at the cell surface, such as lipid uptake following the action of a lipoprotein lipase. Although many structural elements of the lipid transport system of insects are similar to those of mammals, insect lipoprotein-mediated lipid transport was thought to apply only to the latter concept, since the single lipoprotein acts as a reusable lipid shuttle. However, the recent identification of lipoprotein receptors of the LDLR family in insects suggests that lipid transport in these animals may also adopt the first concept. Yet, the endocytic properties of the insect LDLR homologue appear to deviate from those of the mammalian LDLR family members, resulting in the recycling of endocytosed lipoprotein in a transferrin-like manner. This indicates that a hitherto unknown as well as unexpected function can be added to the plethora of functions of LDLR family members. Analysis of the molecular mechanism of the ligand-recycling function of the insect receptor provides also new insight into the possible functioning of the mammalian family members. In the last several years, mammalian and insect lipoprotein-mediated lipid transport systems have been reviewed separately with respect to functioning and lipid delivery. This review, in which new and important developments in the insect field with respect to our understanding of lipid delivery are discussed with a particular focus on the involvement of the LDLR homologue, aims at comparing the two systems, also from an evolutionary biological perspective, and proposes that the two systems are more similar than assumed previously.  相似文献   

15.
Ephydrella larvae strictly regulate their blood osmotic pressure and Na+ content over a wide range of environmental salinities (7 mM to 3000 mM NaCl). They can survive in distilled water and 6000 mM NaCl for several days. In the hindgut the ileum is concerned with the regulation of urine composition whilst the rectum has a purely mechanical function. In the ileum there are large cells which have long basal channels and short apical microvilli, and small cells which have long apical leaflets and short basal channels. It is suggested that the large cells reabsorb water and that the small cells either reabsorb or secrete ions. The configurations of the channels, and the spacing of leaflets and microvilli change with alterations in environmental salinity. Fixation experiments using fixatives of different osmotic pressures show that the configuration of extracellular space in the cells has a marked dependence on both the osmotic pressure of the fixative and upon the environmental salinity. It is suggested that the osmotic response of the cells to fixatives indicates that the osmotic pressure of the cells increases with increasing environmental salinity. It is suggested, in general, that correlation of changes in the volume of extracellular space with changes in ion and water transport must be regarded with caution.  相似文献   

16.
Marine teleosts drink large amounts of seawater to compensate for continuous osmotic water loss. We investigated a possible significant role of the rectum in water absorption in seawater-adapted eel. In rectal sacs filled with balanced salt solution (BSS) and incubated in isotonic BSS, water absorption was greater in seawater-adapted eel than in freshwater eel. Since rectal fluid osmolality was slightly lower than plasma osmolality in seawater-adapted eel, effects of rectal fluid osmolality on water absorption were examined in rectal sacs filled with artificial rectal fluid with different osmolality. Rectal water absorption was greater at lower rectal fluid osmolality, suggesting that an osmotic gradient between the blood and rectal fluid drives the water movement. Ouabain, a specific inhibitor of Na+/K+-ATPase, inhibited water absorption in rectal sacs, indicating that an osmotic gradient favorable to rectal water absorption was created by ion uptake driven by Na+/K+-ATPase. Expression levels of aquaporin 1 (AQP1), a water-selective channel, were significantly higher in the rectum than in the anterior and posterior intestines. Immunoreaction for Na+/K+-ATPase was detected in the mucosal epithelial cells in the rectum with more intense staining in the basal half than in the apical half, whereas AQP1 was located in the apical membrane of Na+/K+-ATPase-immunoreactive epithelial cells. The rectum is spatially separated from the posterior intestine by a valve structure and from the anus by a sphincter. Such structures allow the rectum to swell as intestinal fluid flows into it, and a concomitant increase in hydrostatic pressure may provide an additional force for rectal water absorption. Our findings indicate that the rectum contributes greatly to high efficiency of intestinal water absorption by simultaneous absorption of ions and water.  相似文献   

17.
The rectum of the ant Formica nigricans is composed of six ovoid rectal papillae inserted into a rectal pouch. The wall of the rectal pouch is made up of a flat epithelium of simple rectal cells lined by cuticle, and surrounded by a circular muscle layer. Each rectal papilla is comprised by a simple columnar epithelium of principal cells facing the lumen, and a simple cuboid epithelium of secondary cells towards the hemolymph; a group of 20-25 slender junctional cells lies laterally between both epithelia enclosing an intrapapillar sinus. The muscle layer of the rectal wall also surrounds the base of the papillae. Principal cells do not exhibit extensive infoldings at the apical and basal plasma membranes. Lateral membranes, in contrast, develop highly folded mitochondria-scalariform junction complexes enclosing very narrow intercellular canaliculi between adjacent cells. These canaliculi open to wider intercellular sinuses that ultimately drain into the intrapapillar sinus at the sites of entry of tracheal cells. The lateral plasma membranes do not link to the apical or basal plasma membrane, thus originating a syncytium throughout the principal cells. The apical plasma membrane of secondary cells shows invaginations in relation with an apical tubulovacuolar system, bearing portasomes to the cytoplasmic side of the membrane. Secondary cells unite by convoluted septate junctions, and basolateral infoldings are also developed. These ultrastructural traits, some of them different from those found in other insects, are discussed and examined in relation to their role in water and solute absorption. A route for rectal transport in F. nigricans is proposed.  相似文献   

18.
Mechanisms for regulating oxygen toxicity in phytophagous insects   总被引:5,自引:0,他引:5  
The antioxidant enzymatic defense of insects for the regulation of oxygen toxicity was investigated. Insect species examined were lepidopterous larvae of the cabbage looper (Trichoplusia ni), southern armyworm (Spodoptera eridania), and black swallowtail (Papilio polyxenes). These phytophagous species are subject to both endogenous and exogenous sources of oxidative stress from toxic oxygen radicals, hydrogen peroxide (H2O2) and lipid peroxides (LOOH). In general, the constitutive levels of the enzymes superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GT), and its peroxidase activity (GTpx), and glutathione reductase (GR), correlate well with natural feeding habits of these insects and their relative susceptibility to prooxidant plant allelochemicals, quercetin (a flavonoid), and xanthotoxin (a photoactive furanocoumarin). Induction of SOD activity which rapidly destroys superoxide radicals, appears to be the main response to dietary prooxidant exposure. A unique observation includes high constitutive activity of CAT and a broader subcellular distribution in all three insects than observed in most mammalian species. These attributes of CAT appear to be important in the prevention of excessive accumulation of cytotoxic H2O2. Unlike mammalian species, insects possess very low levels of a GPOX-like activity toward H2O2. Irrefutable proof that this activity is due to a selenium-dependent GPOX found in mammals, is lacking at this time. However, the activity of selenium-independent GTpx is unusually high in insects, suggesting that GTpx and not GPOX plays a prominent role in scavenging deleterious LOOHs. The GSSG generated from the GPOX and GTpx reactions may be reduced to GSH by GR activity. A key role of SOD in protecting insects from prooxidant toxicity was evident when its inhibition resulted in enhanced toxicity towards prooxidants. The role of antioxidant compounds in protecting these insects from toxic forms of oxygen has not been explored in depth. A major finding, however, is that these insects are lutein accumulators. Lutein is a dihydroxy (diol) derivative of beta-carotene, and it is a good quencher of activated forms of oxygen and free radicals. Levels of lutein are highest in P. polyxenes which specializes in feeding on prooxidant-containing plants.  相似文献   

19.
Water vapour absorption (WVA) is an important mechanism for water gain in several xeric insects. Theoretical calculations indicate that the energetic cost of WVA should be small (5-10% of standard metabolic rate) assuming realistic efficiencies. In this study we explored the relationship between WVA, metabolic heat flux (HFmet.) and CO2 release in larvae of Tenebrio molitor using microcalorimetry. By comparing metabolic heat flux with the catabolic rate estimated from VCO2 , we were able to differentiate anabolic and catabolic rates prior to and during WVA, while simultaneously monitoring water exchange. Three to four hours before the onset of WVA, larvae showed clear increases in HFmet. and catabolic flux, and a simultaneous decrease in anabolic flux. Following the onset of WVA, HFmet. decreased again until indistinguishable from control (non-absorbing) values. Possible factors contributing to the "preparatory phase" are discussed, including mobilization of Malpighian tubule transporters and muscular activity in the rectum. Absorbing larvae reduced the water activity of the calorimetric cell to 0.906, agreeing with gravimetric estimates of the critical equilibrium activity. Periods of movement during WVA coincided with decreased uptake fluxes, consistent with the animal's hydrostatic skeleton and the need to close the anus to generate pressure increases in the haemocoel.  相似文献   

20.
Larval lepidopteran and coleopteran insects have evolved a specialised cryptonephric system in the hindgut in which water is constantly and rapidly taken up before defecation. In the silkworm, Bombyx mori, the movement of water through the epithelia within the cryptonephric rectal complex is likely facilitated by the two aquaporins, AQP-Bom1 and AQP-Bom3. Both are functionally water-specific and are predominantly expressed in the hindgut (colon and rectum). Phylogenetically, AQP-Bom1 and AQP-Bom3 belong to the DRIP (Drosophila integral protein) and PRIP (Pyrocoelia rufa integral protein) subfamilies, respectively, of the insect AQP clade. In immunoblot analyses using antipeptide antibodies for each Bombyx AQP, the predicted molecular mass for the respective AQPs were around 25 kDa, and further indicated that both tended to be oligomerised as a homotetramer (~110 kDa). AQP-Bom1 [DRIP] was exclusively expressed at the apical plasma membrane of colonic and rectal epithelial cells, whereas AQP-Bom3 [PRIP] was expressed at the basal plasma membrane of these cells. This polarised localisation of DRIP/PRIP was also observed in the outer cryptonephric Malpighian tubules (outer cMT) and in the six tubules just outside the cryptonephric rectal complex (rectal lead MT). In the rectal epithelia, water is transported from the rectal lumen to the perinephric space and then deposited into the lumen of the outer cMT; the water then goes through the tubular lumen to exit the complex and is finally transported across the rectal lead MT. We conclude that rectal water retrieval into the haemocoele occurs at the very limited region of the water-permeable sites in MT epithelia after passing the rectal and cMT epithelia and that the high osmotic permeability is due to the presence of two distinct water-specific AQPs (DRIP and PRIP) in the epithelial cells of lepidopteran hindgut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号