首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of electrospray ionization coupled to mass spectrometry has enabled the analysis of very large intact protein complexes, even when they are held together by weak non-covalent interactions. Together with equally spectacular advances in mass spectrometric instrumentation, a new field has emerged, termed native protein mass spectrometry, which focuses on the structural and functional analysis of the dynamics and interactions occurring in protein complexes. In the past two years, several important progressive steps in technologies have been reported that have led to exciting applications ranging from the detailed study of equilibria between different quaternary structures as influenced by environmental changes or binding of substrates or cofactors, to the analysis of intact nano-machineries, such as whole virus particles, proteasomes and ribosomes.  相似文献   

2.
Three techniques, electrospray mass spectrometry, ultrafiltration, and proton relaxometry, are compared in the context of the quantitative analysis of non-covalent binding between human serum albumin (HSA) and MRI contrast agents. The study of the affinity by proton relaxometry reveals the association constant and the number of interaction sites assuming that all sites are identical and independent. Ultrafiltration was adapted for the study of paramagnetic complexes. This technique confirmed the results obtained by relaxometry. Electrospray mass spectrometry, an original method able to study non-covalent binding because of its soft ionization process that allows for the survival of weak binding, provides qualitative and quantitative results. Electrospray mass spectrometry confirmed the affinity measured by proton relaxometry and ultrafiltration. This technique requires very small amounts of products and directly gives the stoichiometry of the association, information not easily obtained by classic techniques. Nevertheless, proton relaxometry remains a useful and mandatory technique for determining the enhancement of the relaxation subsequent to the binding although it demands large amounts of compounds. It is to be pointed out that even if the three techniques lead to a similar ranking of the affinity of the contrast agents for HSA, the absolute values of the association constants disagree as a result of the difference in the experimental conditions (presence of salt, native protein or desalted one, approximations in the fitting of the data, liquid or gas phases).  相似文献   

3.
There are a number of proteins whose active forms are non-covalent multichain complexes. Therapeutic intervention involving such complexes has been proposed through the use of muteins to form heterostructures. These resulting structures would either not be recognized by receptors or would be inactive competitive inhibitors to wild-type (wt) proteins. We have used tumor necrosis factor-α (TNF-α) to establish that it is possible to use mass spectrometry to monitor the non-covalent solution structure of therapeutically relevant proteins and correlate the results with binding data. Mass spectrometry is shown to be able to directly monitor the state of the solution complexes to within 5 Da errors mass accuracy of theoretical mass at 50 kDa, as well as to resolve homocomplex from heterocomplex. Furthermore, it was determined that perturbation of the TNF-α complex, at or below pH 4.0, results in monomers that cannot reform into the multimeric complex, and the resulting protein solution can no longer bind to an anti-TNF-α antibody. Dissociation and re-association of the trimer was possible with the use of dimethyl sulfoxide at pH 5.5 and allowed for the resulting detection of both homotrimer and heterotrimer in solution with no impact on antibody binding. This work demonstrates that mass spectrometric techniques offer a means to monitor native solution interactions of non-covalent complexes and to differentiate multiple complexes from each other in solution. This method has applicability in the biopharmaceutical arena for monitoring engineering non-covalent drug complexes for the purpose of altering biological activity.  相似文献   

4.
Preservation of non-covalent interactions in biopolymer mass spectrometry offers new approaches to binding analysis. Recent work from our laboratory is reviewed here and discussed with reference to recent literature in the field. Three issues are considered in particular: hydrophobically stabilized complexes, pH-dependent transitions, and linked protein-ligand and protein-protein binding equilibria.  相似文献   

5.
In the past mass spectrometry has been limited to the study of small, stable molecules, however, with the emergence of electrospray ionization mass spectrometry (ESI-MS) large biomolecules as well as non-covalent biomolecular complexes can be studied. ESI-MS has been used to study non-covalent interactions involving proteins with metals, ligands, peptides, oligonucleotides, as well as other proteins. Although complementary to other well-established techniques such as circular dichroism and fluorescence spectroscopy, ESI-MS offers some advantages in speed, sensitivity, and directness particularly in the determination of the stoichiometry of the complex. One major advantage is the ability of ESI-MS to provide multiple signals each arising from a distinct population within the sample. In this review I will discuss some of the different types of non-covalent biomolecular interactions that have been studied using ESI-MS, highlighting examples which show the efficacy of using ESI-MS to probe the structure of biomolecular complexes.  相似文献   

6.
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.  相似文献   

7.
The field of enzymology has long used small-molecule mass spectrometry. However, the direct interrogation of covalent and non-covalent intermediates by large-molecule mass spectrometry of enzymes or large peptide substrates is illuminating an increasingly diverse array of chemistries used in nature. Recent advances now allow improved detection of several modifications formed at sub-stoichiometric levels on the same polypeptide, and elucidation of intermediate dynamics with low millisecond temporal resolution. Highlighting recent applications in both ribosomal and non-ribosomal biosynthesis of natural products, along with acetyl transferases, sulfonucleotide reducatases, and PEP-utilizing enzymes, the utility of small- and large-molecule mass spectrometry to reveal enzyme intermediates and illuminate mechanism is described briefly. From ever more complex mixtures, mass spectrometry continues to evolve into a key technology for a larger number of today's enzymologists.  相似文献   

8.
A fast and direct method for the monitoring of enzymatic DNA hydrolysis was developed using electrospray ionization mass spectrometry. We incorporated the use of a robotic chip-based electrospray ionization source for increased reproducibility and throughput. The mass spectrometry method allows the detection of DNA fragments and intact non-covalent protein–DNA complexes in a single experiment. We used the method to monitor in real-time single-stranded (ss) DNA hydrolysis by colicin E9 DNase and to characterize transient non-covalent E9 DNase–DNA complexes present during the hydrolysis reaction. The mass spectra showed that E9 DNase interacts with ssDNA in the absence of a divalent metal ion, but is strictly dependent on Ni2+ or Co2+ for ssDNA hydrolysis. We demonstrated that the sequence selectivity of E9 DNase is dependent on the ratio protein:ssDNA or the ssDNA concentration and that only 3′-hydroxy and 5′-phosphate termini are produced. It was also shown that the homologous E7 DNase is reactive with Zn2+ as transition metal ion and that this DNase displays a different sequence selectivity. The method described is of general use to analyze the reactivity and specificity of nucleases.  相似文献   

9.
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   

10.
The non-covalent complexes of five bis-beta-carbolines alkaloids with three different double-stranded oligodeoxynucleotides d(GCGCGATCGCGC)(2), d(GCGCAATTGCGC)(2), and d(GCGAAATTTCGC)(2) were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. These five antitumor compounds all showed DNA-binding abilities. Binding affinities in the order of 2>3, 4>5, and 1 with double-stranded DNA were obtained, which mean that the length of the linkage chain between two beta-carbolines has a remarkable effect on the formation of the non-covalent complexes. Additionally, the preliminary results indicated that bis-beta-carbolines had no notable sequence selectivities.  相似文献   

11.
Disrupting the interactions between human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein and structural elements of the packaging signal (Ψ-RNA) could constitute an ideal strategy to inhibit the functions of this region of the genome leader in the virus life cycle. We have employed electrospray ionization (ESI) Fourier transform mass spectrometry (FTMS) to assess the ability of a series of nucleic acid ligands to bind selected structures of Ψ-RNA and inhibit their specific interactions with NC in vitro. We found that the majority of the ligands included in the study were able to form stable non-covalent complexes with stem–loop 2, 3 and 4 (SL2–4), consistent with their characteristic nucleic acid binding modes. However, only aminoglycosidic antibiotics were capable of dissociating preformed NC•SL3 and NC•SL4 complexes, but not NC•SL2. The apparent specificity of these inhibitory effects is closely dependent on distinctive structural features of the different NC•RNA complexes. The trends observed for the IC50 values correlate very well with those provided by the ligand binding affinities and the dissociation constants of target NC•RNA complexes. This systematic investigation of archetypical nucleic acid ligands provides a valid framework to support the design of novel ligand inhibitors for HIV-1 treatment.  相似文献   

12.
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called “native conditions” (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein−ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.  相似文献   

13.
The minutiae of subtle changes that occur in response to ligand binding in multiprotein complexes are often difficult to assess without resource to high resolution X-ray analysis. Recent developments in mass spectrometry, however, are providing insight into dynamic changes within components. In this article we review recent applications of MS for selection of ligands and definition of their binding characteristics for individual protein targets through to macromolecular complexes such as ribosomes.  相似文献   

14.
Mass spectrometry is now established as a powerful tool for the study of the stoichiometry, interactions, dynamics, and subunit architecture of large protein assemblies and their subcomplexes. Recent evidence has suggested that the 3D structure of protein complexes can be maintained intact in the gas phase, highlighting the potential of ion mobility to contribute to structural biology. A key challenge is to integrate the compositional and structural information from ion mobility mass spectrometry with molecular modelling approaches to produce 3D models of intact protein complexes. In this review, we focus on the mass spectrometry of protein-nucleic acid assemblies with particular attention to the application of ion mobility, an emerging technique in structural studies. We also discuss the challenges that lie ahead for the full integration of ion mobility mass spectrometry with structural biology.  相似文献   

15.
Mass spectrometry is now established as a powerful tool for the study of the stoichiometry, interactions, dynamics, and subunit architecture of large protein assemblies and their subcomplexes. Recent evidence has suggested that the 3D structure of protein complexes can be maintained intact in the gas phase, highlighting the potential of ion mobility to contribute to structural biology. A key challenge is to integrate the compositional and structural information from ion mobility mass spectrometry with molecular modelling approaches to produce 3D models of intact protein complexes. In this review, we focus on the mass spectrometry of protein-nucleic acid assemblies with particular attention to the application of ion mobility, an emerging technique in structural studies. We also discuss the challenges that lie ahead for the full integration of ion mobility mass spectrometry with structural biology.  相似文献   

16.
Chen FF  Tang YN  Wang SL  Gao HW 《Amino acids》2009,36(3):399-407
The non-covalent interaction of brilliant red (BR) with lysozyme was investigated by the UV spectrometry, circular dichroism (CD) and isothermal titration calorimetry (ITC). The thermodynamic characterization of the interaction was performed and the assembly complexes were formed: lysozyme(BR)17 at pH 2.03, lysozyme(BR)15 at pH 3.25 and lysozyme(BR)12 at pH 4.35, which corresponded to the physiological acidities. The ionic interaction induces a combination of multiple non-covalent bonds including hydrogen bond, hydrophobic interaction and van der Waals force. The two-step binding model of BR was found, in which one or two BR molecules entered the hydrophobic intracavity of lysozyme and the others bound to the hydrophilic outer surface of lysozyme. Moreover, BR binding resulted in change of the lysozyme conformation and inhibition of the lysozyme activity. The possible binding site and type of BR and the conformational transition of lysozyme were speculated and illustrated. This work provided a useful approach for study on enzyme toxicity of aromatic azo chemicals.  相似文献   

17.
Electron capture dissociation (ECD) is a new fragmentation technique used in Fourier transform ion cyclotron resonance mass spectrometry and is complementary to traditional tandem mass spectrometry techniques. Disulfide bonds, normally stable to vibrational excitation, are preferentially cleaved in ECD. Fragmentation is fast and specific and labile post-translational modifications and non-covalent bonds often remain intact after backbone bond dissociation. ECD provides more extensive sequence coverage in polypeptides, and at higher electron energies even isoleucine and leucine are distinguishable. In biotechnology, the main area of ECD application is expected to be the top-down verification of DNA-predicted protein sequences, de novo sequencing, disulfide bond analysis and the combined top-down/bottom-up analysis of post-translational modifications.  相似文献   

18.
Protein-RNA complexes play many important roles in diverse cellular functions. They are involved in a wide variety of different processes in growth and differentiation at the various stages of the cell cycle. As their function and catalytic activity are directly coupled to the structural arrangement of their components--proteins and ribonucleic acids--the investigation of protein-RNA interactions is of great functional and structural importance. Here we discuss the most prominent examples of protein-RNA complexes and describe some frequently used purification strategies. We present various techniques and applications of mass spectrometry to study protein-RNA complexes. We discuss the analysis of intact complexes as well as proteomics-based and crosslinking-based approaches in which proteins are cleaved into smaller peptides. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

19.
Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses.  相似文献   

20.
Oligomers of Abeta peptide have been indicated recently as a possible main causative agent of Alzheimer's disease. However, information concerning their structural properties is very limited. Here Abeta oligomers are studied by non-covalent complexes mass spectrometry and disulfide rearrangement. As a model molecule, an Abeta fragment spanning residues 10-30 (Abeta10-30) has been used. This model peptide is known to contain the core region responsible for Abeta aggregation to fibrils. Non-covalent complexes mass spectrometry indicates that, at neutral pH, monomers are accompanied by oligomers up to hexamers of gradually decreasing population. H-2H exchange studies and direct monomer exchange rate measurements with the use of 15N labeled peptides and mass spectrometry show a fast exchange of monomeric units between oligomers. Disulfide exchange studies of cysteine tagged Abeta10-30 and its mutant show proximity of N-N and C-C termini of monomers in oligomers. The presented data underscore a dynamic character for pre-nucleation forms of Abeta, however, with a marked tendency for parallel strand orientation in oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号