首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.  相似文献   

2.
The growth of Lactobacillus delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus) on lactose was altered upon aerating the cultures by agitation. Aeration caused the bacteria to enter early into stationary phase, thus reducing markedly the biomass production but without modifying the maximum growth rate. The early entry into stationary phase of aerated cultures was probably related to the accumulation of hydrogen peroxide in the medium. Indeed, the concentration of hydrogen peroxide in aerated cultures was two to three times higher than in unaerated ones. Also, a similar shift from exponential to stationary phase could be induced in unaerated cultures by adding increasing concentrations of hydrogen peroxide. A significant fraction of the hydrogen peroxide produced by L. delbrueckii subsp. bulgaricus originated from the reduction of molecular oxygen by NADH catalyzed by an NADH:H2O2 oxidase. The specific activity of this NADH oxidase was the same in aerated and unaerated cultures, suggesting that the amount of this enzyme was not directly regulated by oxygen. Aeration did not change the homolactic character of lactose fermentation by L. delbrueckii subsp. bulgaricus and most of the NADH was reoxidized by lactate dehydrogenase with pyruvate. This indicated that NADH oxidase had no (or a very small) energetic role and could be involved in eliminating oxygen.  相似文献   

3.
The aim of this study was enhancing of stability properties of catalase enzyme by encapsulation in alginate/nanomagnetic beads. Amounts of carrier (10–100 mg) and enzyme concentrations (0.25–1.5 mg/mL) were analyzed to optimize immobilization conditions. Also, the optimum temperature (25–50°C), optimum pH (3.0–8.0), kinetic parameters, thermal stability (20–70°C), pH stability (4.0–9.0) operational stability (0–390 min), and reusability were investigated for characterization of the immobilized catalase system. The optimum pH levels of both free and immobilized catalase were 7.0. At the thermal stability studies, the magnetic catalase beads protected 90% activity, while free catalase maintained only 10% activity at 70°C. The thermal profile of magnetic catalase beads was spread over a large area. Similarly, this system indicated the improving of the pH stability. The reusability, which is especially important for industrial applications, was also determined. Thus, the activity analysis was done 50 times in succession. Catalase encapsulated magnetic alginate beads protected 83% activity after 50 cycles.  相似文献   

4.
谷胱甘肽(GSH)在生物细胞抵御外界环境条件的刺激和胁迫时起到非常重要的作用。考察了不同时间不同浓度过氧化氢胁迫和过氧化氢连续胁迫对产朊假丝酵母合成GSH的影响, 发现低浓度过氧化氢的连续胁迫对GSH的合成有明显促进作用。进一步在发酵罐上应用了低浓度过氧化氢(36 mmol/L)持续胁迫策略, 最终GSH产量为922 mg/L, 胞内GSH含量为1.64%, 比对照分别提高了7%和35%。  相似文献   

5.
谷胱甘肽(GSH)在生物细胞抵御外界环境条件的刺激和胁迫时起到非常重要的作用。考察了不同时间不同浓度过氧化氢胁迫和过氧化氢连续胁迫对产朊假丝酵母合成GSH的影响, 发现低浓度过氧化氢的连续胁迫对GSH的合成有明显促进作用。进一步在发酵罐上应用了低浓度过氧化氢(36 mmol/L)持续胁迫策略, 最终GSH产量为922 mg/L, 胞内GSH含量为1.64%, 比对照分别提高了7%和35%。  相似文献   

6.
Hydrogen peroxide production is a well-known trait of many bacterial species associated with the human body. In the presence of oxygen, the probiotic lactic acid bacterium Lactobacillus johnsonii NCC 533 excretes up to 1 mM H2O2, inducing growth stagnation and cell death. Disruption of genes commonly assumed to be involved in H2O2 production (e.g., pyruvate oxidase, NADH oxidase, and lactate oxidase) did not affect this. Here we describe the purification of a novel NADH-dependent flavin reductase encoded by two highly similar genes (LJ_0548 and LJ_0549) that are conserved in lactobacilli belonging to the Lactobacillus acidophilus group. The genes are predicted to encode two 20-kDa proteins containing flavin mononucleotide (FMN) reductase conserved domains. Reductase activity requires FMN, flavin adenine dinucleotide (FAD), or riboflavin and is specific for NADH and not NADPH. The Km for FMN is 30 ± 8 μM, in accordance with its proposed in vivo role in H2O2 production. Deletion of the encoding genes in L. johnsonii led to a 40-fold reduction of hydrogen peroxide formation. H2O2 production in this mutant could only be restored by in trans complementation of both genes. Our work identifies a novel, conserved NADH-dependent flavin reductase that is prominently involved in H2O2 production in L. johnsonii.  相似文献   

7.
Cell disruption in a Microfluidizer was a function of both operating pressure and number of passes. The operating pressure had greater effect on the disruption than did the number of passes as indicated by the magnitude of the constants from the cell disruption equation. Protein release correlated with aminopeptidase release by Lactobacillus casei sp. casei. The optimum operating pressure for enzyme extraction was 76 MPa with loss of enzyme activity about 15 to 20%.  相似文献   

8.
陈旭光  唐俊明  张蕾  郭凌郧  杨建业  郑飞  王露 《生物磁学》2013,(34):6615-6618,6656
目的:活性氧介导的氧化损伤是缺血再灌注损伤的重要机制,本研究通过观察H2O2预处理对氧化损伤的H9c2心肌细胞存活率和细胞凋亡的影响,探讨其保护H9c2心肌细胞的作用机制。方法:体外培养H9c2心肌细胞,取对数生长期细胞用于实验研究。建立H2O2预处理抵抗高浓度H:O:诱导的细胞氧化损伤模型,实验分组如下:(1)正常对照组(CTL);(2)损伤组(INJURY);(3)预处理组十损伤组(PC)。应用CCK8法检测细胞存活率;试剂盒检测胞内MDA水平和T.sOD活性;Hoechst33258染色观察凋亡形态;Annexin-V/PI双染与流式细胞术检测细胞凋亡率。结果:25vLmol/L的H202预处理90rain能明显地保护H9c2心肌细胞抵抗400μmol/LH2O2诱导的氧化损伤,提高细胞存活率,下调MDA水平,上调SOD活性,抑制细胞凋亡,降低细胞凋亡率。结论:低浓度H2O2预处理能减轻H9c2心肌细胞的氧化损伤,抑制氧化损伤诱导的心肌细胞凋亡,具有很好的抗氧化损伤和抗心肌细胞凋亡的保护作用,其作用机制可能与细胞SOD活性上调有关。H2O2预处理为临床治疗心肌缺血/再灌注损伤提供了一项新策略。  相似文献   

9.
10.
The optimal fermentation temperature, pH, and Bacto-casitone (Difco Laboratories, Detroit, Mich.) concentration for production of exopolysaccharide by Lactobacillus delbrueckii subsp. bulgaricus RR in a semidefined medium were determined by using response surface methods. The design consisted of 20 experiments, 15 unique combinations, and five replications. All fermentations were conducted in a fermentor with a 2.5-liter working volume and were terminated when 90% of the glucose in the medium had been consumed. The population of L. delbrueckii subsp. bulgaricus RR and exopolysaccharide content were measured at the end of each fermentation. The optimum temperature, pH, and Bacto-casitone concentration for exopolysaccharide production were 38°C, 5, and 30 g/liter, respectively, with a predicted yield of 295 mg of exopolysaccharide/liter. The actual yield under these conditions was 354 mg of exopolysaccharide/liter, which was within the 95% confidence interval (217 to 374 mg of exopolysaccharide/liter). An additional experiment conducted under optimum conditions showed that exopolysaccharide production was growth associated, with a specific production at the endpoint of 101.4 mg/g of dry cells. Finally, to obtain material for further characterization, a 100-liter fermentation was conducted under optimum conditions. Twenty-nine grams of exopolysaccharide was isolated from centrifuged, ultrafiltered fermentation broth by ethanol precipitation.  相似文献   

11.
12.
为探究自噬抑制剂6-氨基-3-甲基腺嘌呤(3-methyladenine,3-MA)对损伤细胞氧化应激水平的影响,将3-MA作用于H2O2诱导的PC12细胞损伤模型,以自噬增强剂雷帕霉素(rapamycin,Rap)作为对照,探讨自噬与氧化应激的关系。测定线粒体的膜电位和细胞内的活性氧(reactive oxygen species, ROS)与丙二醛(malondialdehyde, MDA)含量,以及超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性,评价损伤细胞的氧化应激状态。单丹(磺)酰戊二胺(monodansylcadaverine,MDC)染色,观察损伤细胞的自噬情况。蛋白质印迹分析损伤细胞中的自噬相关蛋白质LC3-II/LC3-I比值变化。实验结果显示:与正常组相比,H2O2损伤细胞的ROS水平上升到正常组的141%,MDA含量增加(P<0.001);CAT与SOD酶活力显著降低(P<0.001),差异均有统计学意义,证明损伤细胞氧化应激水平增加;MDC染色结果表明,H2O2组自噬明显增加。Western印迹结果表明,LC3-II/LC3-I值显著升高(P<0.05);与损伤组相比,3-MA组MDC染色结果表明,自噬水平降低。Western印迹结果表明,LC3-II/LC3-I值下降;细胞内ROS水平升高,增加到正常组的208%。MDA含量增加(P<0.001),CAT、SOD酶活力降低(P<0.001)。综上结果表明,自噬抑制剂可增加H2O2诱导的PC12细胞损伤模型的氧化应激水平,增加细胞凋亡。  相似文献   

13.
We used an H2-purging culture vessel to replace an H2-consuming syntrophic partner, allowing the growth of pure cultures of Syntrophothermus lipocalidus on butyrate and Aminobacterium colombiense on alanine. By decoupling the syntrophic association, it was possible to manipulate and monitor the single organism's growth environment and determine the change in Gibbs free energy yield (ΔG) in response to changes in the concentrations of reactants and products, the purging rate, and the temperature. In each of these situations, H2 production changed such that ΔG remained nearly constant for each organism (−11.1 ± 1.4 kJ mol butyrate−1 for S. lipocalidus and −58.2 ± 1.0 kJ mol alanine−1 for A. colombiense). The cellular maintenance energy, determined from the ΔG value and the hydrogen production rate at the point where the cell number was constant, was 4.6 × 10−13 kJ cell−1 day−1 for S. lipocalidus at 55°C and 6.2 × 10−13 kJ cell−1 day−1 for A. colombiense at 37°C. S. lipocalidus, in particular, seems adapted to thrive under conditions of low energy availability.  相似文献   

14.
Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications.  相似文献   

15.
Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 produced an extracellular polysaccharide when grown in a chemically defined medium with glucose or lactose as the substrate carbohydrate. The isolated extracellular polysaccharide had a sugar composition of glucose, galactose and rhamnose in a ratio of 1:6.8:0.7. The production of extracellular polysaccharides increased at higher temperatures, but the bacterium rapidly lost its polysaccharide producing ability at 47°C. Production of polysaccharides was growth-related: no polysaccharide production was found after growth had ceased. An excess carbohydrate did not result in increased polysaccharide production.  相似文献   

16.
以H2O2为中心的活性氧(reactive oxygen species,ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍特征,其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应,并与一系列信号转导过程相关联。作为关键的ROS产生酶,质膜NADPH氧化酶(plasma membrane NADPH oxidase,PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用,被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展,并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。  相似文献   

17.
以H2O2为中心的活性氧(reactive oxygen species, ROS)的产生是动植物发育与响应外界生物与非生物胁迫的普遍 特征, 其在生理和分子2个水平上调控植物的发育和对外界胁迫的响应, 并与一系列信号转导过程相关联。作为关键的ROS产生酶, 质膜NADPH氧化酶(plasma membrane NADPH oxidase, PM-NOX)在植物应对各种生物和非生物胁迫中具有重要作用, 被广泛认为是胁迫条件下植物细胞ROS产生并积累的主要来源。该文简要综述了近年来人们在植物细胞ROS产生、清除、生理功能以及PM-NOX酶的结构特征与功能等方面的研究进展, 并认为H2O2-NOX系统是一种植物体内普遍存在的重要发育调控与胁迫响应机制。  相似文献   

18.
Hydrogen peroxide (H2O2) has been implicated in many stress conditions. Control of H2O2 levels is complex and dissection of mechanisms generating and relieving H2O2 stress is difficult, particularly in intact plants. We have used transgenic tobacco with approximately 10% wild-type catalase activity to study the role of catalase and effects of H2O2 stress in plants. Catalase-deficient plants showed no visible disorders at low light, but in elevated light rapidly developed white necrotic lesions on the leaves. Lesion formation required photorespiratory activity since damage was prevented under elevated CO2. Accumulation of H2O2 was not detected during leaf necrosis. Alternative H2O2-scavenging mechanisms may have compensated for reduced catalase activity, as shown by increased ascorbate peroxidase and glutathione peroxidase levels. Leaf necrosis correlated with accumulation of oxidized glutathione and a 4-fold decrease in ascorbate, indicating that catalase is critical for maintaining the redox balance during oxidative stress. Such control may not be limited to peroxisomal H2O2 production. Catalase functions as a cellular sink for H2O2, as evidenced by complementation of catalase deficiency by exogenous catalase, and comparison of catalase-deficient and control leaf discs in removing external H2O2. Stress analysis revealed increased susceptibility of catalase-deficient plants to paraquat, salt and ozone, but not to chilling.  相似文献   

19.
An Escherichia coli O157:H7 dps::nptI mutant (FRIK 47991) was generated, and its survival was compared to that of the parent in HCl (synthetic gastric fluid, pH 1.8) and hydrogen peroxide (15 mM) challenges. The survival of the mutant in log phase (5-h culture) was significantly impaired (4-log10-CFU/ml reduction) compared to that of the parent strain (ca. 1.0-log10-CFU/ml reduction) after a standard 3-h acid challenge. Early-stationary-phase cells (12-h culture) of the mutant decreased by ca. 4 log10 CFU/ml while the parent strain decreased by approximately 2 log10 CFU/ml. No significant differences in the survival of late-stationary-phase cells (24-h culture) between the parent strain and the mutant were observed, although numbers of the parent strain declined less in the initial 1 h of acid challenge. FRIK 47991 was more sensitive to hydrogen peroxide challenge than was the parent strain, although survival improved in stationary phase. Complementation of the mutant with a functional dps gene restored acid and hydrogen peroxide tolerance to levels equal to or greater than those exhibited by the parent strain. These results demonstrate that decreases in survival were from the absence of Dps or a protein regulated by Dps. The results from this study establish that Dps contributes to acid tolerance in E. coli O157:H7 and confirm the importance of Dps in oxidative stress protection.  相似文献   

20.
Sweet sorghum juice was a cheap and renewable resource, and also a potential carbon source for the fermentation production of lactic acid (LA) by a lactic acid bacterium. One newly isolated strain Lactobacillus salivarius CGMCC 7.75 showed the ability to produce the highest yield and optical purity of LA from sweet sorghum juice. Studies of feeding different concentrations of sweet sorghum juice and nitrogen source suggested the optimal concentrations of fermentation were 325 ml l−1 and 20 g l−1, respectively. This combination produced 142.49 g l−1 LA with a productivity level of 0.90 g of LA per gram of sugars consumed. The results indicated the high LA concentration achieved using L. salivarius CGMCC 7.75 not only gives cheap industrial product, but also broaden the application of sweet sorghum.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-013-0377-0) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号