首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malmström RE 《Life sciences》2001,69(17):1999-2005
The effects of the first selective, non-peptide, NPY Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamid (BIIE0246) were studied on splenic vascular responses evoked in the pig in vivo. BIIE0246 abolished the splenic vasoconstrictor response to the NPY Y2 receptor agonist N-acetyl[Leu25Leu31]NPY(24-36), but did not affect the response to the NPY Y1 receptor agonist [Leu31Pro34]NPY, which in turn was abolished by the selective NPY Y1 receptor antagonist (2R)-5-([amino(imino)methyl]amino)-2-[(2,2-diphenylacetyl)amino]-N-[(IR)-1-(4-hydroxyphenyl)ethyl]-pentanamide (H 409/22). Furthermore, the PYY-evoked splenic vasoconstrictor response was partially antagonized by BIIE0246 and subsequently almost abolished by the addition of H 409/22. It is concluded that BIIE0246 exerts selective (vs the NPY Y1 receptor) NPY Y2 receptor antagonism, and thus represents an interesting tool for classification of NPY receptors, in vivo. In addition, evidence for NPY Y2 receptor mediated vasoconstriction was presented. Furthermore, both NPY Y1 and Y2 receptors are involved in the splenic vasoconstrictor response to PYY.  相似文献   

2.
Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY. Individual replacement of the four arginine residues at positions 19, 25, 33, and 35 by l-alanine showed that arginine 33 is essential for binding. The aptamer does not recognize pancreatic polypeptide, a highly homologous Y4 receptor-specific peptide of the gut. Furthermore, the affinity of the aptamer to the Y5 receptor-selective agonist [Ala(31),Aib(32)]NPY and the Y1/Y5 receptor-binding peptide [Leu(31),Pro(34)]NPY was considerably reduced, whereas Y2 receptor-specific NPY mutants were bound well by the aptamer. Accordingly, the NPY epitope was recognized by the Y2 receptor, and the aptamer was highly similar. This Y2 receptor mimicking effect was further confirmed by competition binding studies. Whereas the aptamer competed with the Y2 receptor for binding of [(3)H]NPY with high affinity, a low affinity displacement of [(3)H]NPY was observed at the Y1 and the Y5 receptors. Consequently, competition at the Y2 receptor occurred with a considerably lower K(i) value compared with the Y1 and Y5 receptors. These results indicate that the aptamer mimics the binding of NPY to the Y2 receptor more closely than to the Y1 and Y5 receptors.  相似文献   

3.
NPY is the most potent orexigenic agent known to man, with NPY Y1 and NPY Y5 being the receptor subtypes that are most likely responsible for centrally-mediated NPY-induced feeding responses. Based on the aforementioned, novel hydrazide derivatives were prepared for the purpose of searching new NPY Y5 receptor antagonists. Many of the compounds exhibited nanomolar binding affinity for this receptor, affording trans-N-(4-[N'-(3,4-dichlorophenyl)hydrazinocarbonyl]cyclohexylmethyl)-4-fluorobenzenesulfonamide, which showed the best activity (IC(50)=0.43nM).  相似文献   

4.
Aiming to develop a functional assay for the human NPY Y5 receptor based on adenylyl cyclase activity, HEC-1B cells, in which cAMP synthesis can be efficiently stimulated with forskolin, were selected for the transfection with the pcDNA3-Y5-FLAG and the pcDEF3-Y5 vectors. After optimization of the transfection procedure, the binding of [3H]propionyl-NPY to transiently and stably expressed Y5 receptors was determined. The affinities of NPY, NPY derivatives, and rPP (pNPY > or = p(Leu31Pro34)NPY = p(2-36)NPY > or = p(D-Trp32)NPY > p(13-36)NPY > rPP) were in accordance with the NPY Y5 receptor subtype. For [3H]propionyl-pNPY approximately 1.7 x 10(5) and 1 x 10(6) binding sites per transiently and stably transfected cell, respectively, were determined. The KD values were 2.4 +/- 0.4 and 1.7 +/-0.2 nM, respectively. Due to the high expression of the receptor protein, both stably and transiently transfected cells can be conveniently used in routine radioligand binding studies. By contrast, functional assays were only feasible with HEC-1B cells stably expressing the Y5 receptor. In these cells, 10 nM pNPY inhibited the forskolin-stimulated cAMP synthesis by 75%. This effect was partially antagonized by the Y5 antagonist N-?trans-[4-(2-naphthylmethylamino)-methyl]cyclohexylmethyl) naphthalene-2-sulfonamide. Although the genetic variability of cancer cells is in principle incompatible with a stable phenotype, both ligand binding characteristics and functionality of the Y5 receptor remained unchanged for more than 30 passages.  相似文献   

5.
We have evaluated 3 newly developed neuropeptide Y receptor antagonists in various in vitro binding and bioassays: BIBO3304 (Y1), T4[NPY33-36]4 (Y2), and CGP71683A (Y5). In rat brain homogenates, BIBO3304 competes for the same population of [125I][Leu31,Pro34] peptide YY (PYY) binding sites (75%) as BIBP3226, but with a 10 fold greater affinity (IC50 of 0.2 +/- 0.04 nM for BIBO3304 vs. 2.4 +/- 0.07 nM for BIBP3226),while CGP71683A has high affinity for 25% of specific [125I][Leu31,Pro34]PYY binding sites. Both BIBO3304 and CGP71683A (at 1.0 microM) were unable to compete for a significant proportion of specific [125I]PYY3-36/Y2 sites. The purported Y2 antagonist T4[NPY33-36]4 competed against [125I]PYY3-36 binding sites with an affinity of 750 nM. These results were confirmed in HEK 293 cells transfected with either the rat Y1, Y2, Y4, or Y5 receptor cDNA. BIBO3304, but not CGP71683A, competed with high affinity for [125I][Leu31,Pro34]PYY binding sites in HEK 293 cells transfected with the rat Y1 receptor cDNA, whereas the reverse profile was observed upon transfection with the rat Y5 receptor cDNA. Additionally, both molecules were inactive at Y2 and Y4 receptor subtypes expressed in HEK 293 cells. Receptor autoradiographic studies revealed the presence of [125I][Leu31,Pro34]PYY/BIBO3304-insensitive sites in the rat brain as reported previously for BIBP3226. Finally, the selective antagonistic properties of BIBO3304 were demonstrated in a Y1 bioassay (rabbit saphenous vein; pA2 value of 9.04) while being inactive in Y2 (rat vas deferens) and Y4 (rat colon) bioassays. These results confirm the high affinity and selectivity of BIBO3304 and CGP71683A for the Y1 and Y5 receptor subtypes, respectively, while the purported Y2 antagonist, T4[NPY33-36]4 possesses rather low affinity for this receptor.  相似文献   

6.
Fluorescence-labeled neuropeptide Y (NPY) has been used in flow cytometric binding assays for the determination of affinity constants of NPY Y1, Y2, and Y5 receptor ligands. Because the binding of fluorescent NPY is insufficient for competition studies at the human Y4 receptor (hY4R), we replaced Glu-4 in hPP with Lys for the derivatization with cyanine-5. Because cy5-[K(4)]hPP has high affinity (Kd 5.6 nM) to the hY4R, it was used as a probe in a flow cytometric binding assay. Specific binding of cy5-[K(4)]hPP to hY4R was visualized by confocal microscopy. The hY(4)R, the chimeric G protein G(qi5) and mitochondrially targeted apoaequorin were stably coexpressed in CHO cells. Aequorin luminescence was quantified in a microplate reader and by a CCD camera. By application of these methods 3-cyclohexyl-N-[(3-1H-imidazol-4-ylpropylamino)(imino)methyl]propanamide (UR-AK49) was discovered as the first nonpeptidic Y4R antagonist (pKi 4.17), a lead to be optimized in terms of potency and selectivity.  相似文献   

7.
We investigated the mitogenic effect, measured as [3H]thymidine incorporation, of neuropeptide Y (NPY) on smooth muscle cells (SMCs) from human subcutaneous arteries (diameter: 0.4 mm). NPY stimulated DNA synthesis in a concentration-dependent manner, Emax 32 +/- 5% relative to control. The effect was potently antagonised by the NPY Y1 receptor antagonist BIBP3226 ((R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]-D-arginine-a mide), indicating the effect to be mediated via the NPY Y1 receptor. Noradrenaline (NA) also induced mitogenesis, Emax 35 +/- 10% relative to control. When added together, NPY and NA potentiated the [3H]thymidine incorporation, Emax 109 +/- 38% relative to control. Also, this effect seems to be mediated by the NPY Y1 receptor, since BIBP3226 blocked the effect (44 +/- 9% relative to control). The mitogenic effect of NPY and NA, two important transmitters of the sympathetic nervous system, might have clinical consequences on conditions with elevated sympathetic nerve activity.  相似文献   

8.
Neuropeptide Y (NPY) and melanocortin (MC) peptides have opposite effects on food intake: NPY-like peptides and MC receptor antagonists stimulate feeding and increase body weight, whereas melanocortins and NPY antagonists inhibit food intake. In this study we tested whether the orexigenic effect of the selective MC4 receptor antagonist HS014 (1 nmol) could be inhibited by three different NPY antagonists, (R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]D-argininam ide (BIBP3226), (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2(diphenyl acetyl)-argininamidetrifluoroacetate (BIBO3304), and decapeptide [D-Tyr(27,36)D-Thr32]NPY(27-36), after icv administration in freely feeding male rats. All three NPY receptor antagonists inhibited the orexigenic effects of HS014 partially and with markedly different potency. [D-Tyr(27,36)D-Thr32]NPY(27-36) was active only in subconvulsive dose. The NPY Y1 selective antagonist BIBP3226 was more effective in inhibiting the effect of HS014 than BIBO3304 despite in vitro data indicating that BIBP3226 is about 10 times less potent than BIBO3304 at NPY Y1 receptor. An enantiomer of BIBO3304, BIBO3457, failed to inhibit HS014-induced feeding, indicating that the effects of BIBO3304 were stereoselective. These results suggest that stimulation of food intake caused by weakening of melanocortinergic tone at the MC4 receptor is partially but not exclusively related to NPY Y1 receptor activation.  相似文献   

9.
Cardiovascular and respiratory effects of intracerebroventricular (icv) administration of neuropeptide Y (NPY) and separate, preferential agonists for NPY Y1 and Y2 receptors were observed in anaesthetised dogs. Central injections of NPY resulted in significant cardiac slowing and decreases in arterial pressure. These cardiovascular effects were blocked by central injection of the NPY Y1- preferring antagonist 1229U91. Central injection of NPY did not have a significant effect on ventilation, but the NPY Y1 antagonist 1229U91 administered alone caused a significant increase in ventilation. The NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreased ventilation while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24--36 significantly increased it. A similar inverse relationship was seen with respect to blood pressure, with the NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreasing blood pressure, while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24-36 significantly increased it. These findings suggest a role for NPY Y1 receptors in pathways mediating decreases in ventilation and blood pressure, and for NPY Y2 receptors in those mediating increased ventilation and blood pressure.  相似文献   

10.
Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system of mammalians. NPY acts by binding to at least five G-protein coupled receptors (GPCRs) which have been named Y1, Y2, Y4, Y5 and Y6. Three spin-labelled NPY analogues containing the nitroxide group of the amino acid TOAC (2.2.6.6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) as a paramagnetic probe were synthesized by solid-phase peptide synthesis. Synthetic problems owing to the sensitivity of nitroxide towards acidic and reducing conditions have been overcome by using a cleavage cocktail that contains anisole and cresol scavengers. Concerning the receptor binding preferences, the analogues [TOAC34]-pNPY and [Ala31, TOAC32]-pNPY showed a marked selectivity for the Y5 receptor, while [TOAC2]-pNPY maintained a significant binding also to the Y2 receptor subtype. The modifications of the native peptide structure caused by the introduction of TOAC were examined by circular dichroism. In order to determine the rotational correlation time of the spin probes, electron paramagnetic resonance measurements were performed in solution and in the presence of liposomes. This allowed us to evaluate the backbone dynamics of the different parts of the NPY molecule in the free and membrane bound states. The results of these studies showed that NPY Interacts with liposomes by using the C-terminal alpha-helix while the N-terminal tail retains a flexibility that is comparable to that of the peptide in solution as already shown by NMR studies on DPC micelles. Furthermore, we demonstrated that TOAC-labelllng is a valuable tool to investigate changes in the backbone conformation and dynamics. This may be of major importance for peptides and small proteins when they bind to cell membranes.  相似文献   

11.
The neuropeptide Y (NPY) Y(5) receptor has been proposed to mediate several physiological effects of NPY, including the potent orexigenic activity of the peptide. However, the lack of selective NPY Y(5) receptor ligands limits the characterization of the physiological roles of this receptor. Screening of several analogs of NPY revealed that [D-Trp(34)]NPY is a potent and selective NPY Y(5) receptor agonist. Unlike the prototype selective NPY Y(5) receptor agonist [D-Trp(32)]NPY, [D-Trp(34)]NPY markedly increases food intake in rats, an effect that is blocked by the selective NPY Y(5) receptor antagonist CGP 71683A. These data demonstrate that [D-Trp(34)]NPY is a useful tool for studies aimed at determining the physiological roles of the NPY Y(5) receptor.  相似文献   

12.
The low-molecular-mass, cyclic analog of neuropeptide Y, [Ahx5-24, gamma-Glu2-epsilon-Lys30] NPY (YESK-Ahx-RHYINKITRQRY; Ahx, 6-aminohexanoic acid; NPY, neuropeptide Y), was synthesized and investigated for receptor binding, inhibition of forskolin-stimulated cAMP accumulation, inhibition of electrically stimulated rat vas deferens contractions and ability to increase blood pressure. Like the linear peptide [Ahx5-24] NPY (YPSK-Ahx-RHYINLITRQRY), the more rigid, cyclic analog showed good correlation between receptor binding to rabbit kidney membranes and biological activity in the vas deferens assay. Binding of this peptide to a new Y2-receptor-expressing cell line was slightly reduced, compared to the linear peptide [Ahx5-24] NPY, however inhibition of cAMP accumulation was even more efficient. Unlike the linear peptide [Ahx5-24] NPY, the cyclic analog did not induce a blood pressure increase in rats. Reduced binding to Y1 receptor-expressing SK-N-MC cells, as well as the loss of capability of signal transduction, suggest that only Y2-mediated activity is preserved after cyclization. The selectivity of the cyclic compound for Y2 subtypes of NPY receptors with respect to inhibition of cAMP accumulation is more than fortyfold increased, as compared to the linear NPY-(13-36) peptide, which has been used to determine Y2 selectivity so far.  相似文献   

13.
Neuropeptide Y (NPY) is an important regulator of energy balance in mammals through its orexigenic, antithermogenic, and insulin secretagogue actions. We investigated the regulation of endogenous NPY release from rat hypothalamic slices by NPY receptor ligands and calcium channel antagonists. High-potassium stimulation (60 mM) of the slices produced a calcium-dependent threefold increase in NPY release above basal release. The Y2 receptor agonists NPY(13-36) and N-acetyl[Leu28,Leu31]NPY(24-36), the Y4 agonist rat pancreatic polypeptide (rPP), and the Y4/Y5 agonist human pancreatic polypeptide (hPP) significantly reduced both basal and stimulated NPY release. NPY(13-36)-induced reduction of NPY release could be partially prevented in the presence of the weak Y2 antagonist T4-[NPY(33-36)]4, whereas the hPP- and rPP-induced inhibition of release was not affected by the Y5 antagonist CGP71683A or the Y1 antagonist BIBP3226. The selective Y1, Y2, and Y5 antagonists had no effect on either basal or potassium-stimulated release when administered alone. The calcium channel inhibitors omega-conotoxin GVIA (N-type), omega-agatoxin TK (P/Q-type), and omega-conotoxin MVIIC (Q-type) all significantly inhibited potassium-stimulated NPY release, without any effect on basal release, whereas nifedipine had no effect on either basal or stimulated release. Addition of both omega-conotoxin GVIA and omega-agatoxin TK together completely inhibited the potassium-stimulated release. In conclusion, we have demonstrated that NPY release from hypothalamic slices is calcium-dependent, involving N-, P-, and Q-type calcium channels. NPY release is also inhibited by Y2 agonists and rPP/hPP, suggesting that Y2 and Y4 receptors may act as autoreceptors on NPY-containing nerve terminals.  相似文献   

14.
Combination of structural elements from a potent Y5 antagonist (2) with thiazole fragments that exhibit weak Y5 affinities followed by lead optimisation led to the discovery of (5,6-dihydro-4H-3-thia-1-aza-benzo[e]azulen-2-yl)-piperidin-4-ylmethyl-amino and (4,5-dihydro-6-oxa-3-thia-1-aza-benzo[e]azulen-2-yl)-piperidin-4-ylmethyl-amino derivatives. Both classes of compounds are capable of delivering potent and selective orally and centrally bioavailable NPY Y5 receptor antagonists.  相似文献   

15.
Continuing medicinal chemistry studies to identify spiropiperidine-derived NPY Y5 receptor antagonists are described. Aryl urea derivatives of a variety of spiropiperidines were tested for their NPY Y5 receptor binding affinities. Of the spiropiperidines so far examined, spiro[3-oxoisobenzofurane-1(3H),4′-piperidine] was a useful scaffold for producing orally active NPY Y5 receptor antagonists. Oral administration of 5c significantly inhibited the Y5 agonist-induced food intake in rats with a minimum effective dose of 3 mg/kg. In addition, this compound was efficacious in decreasing body weight in diet-induced obese mice.  相似文献   

16.
17.
Members of the neuropeptide Y (NPY) family regulate many physiological processes via interaction with at least four functional, pharmacologically distinct Y-receptors. However, selective antagonists developed for several subtypes have not been useful in defining particular Y-receptor functions in vivo. To identify critical residues within members of the NPY family required for Y-receptor subtype-selectivity we have determined the contribution of each residue within NPY to receptor binding by replacing them with L-alanine. In a second study, chimeric peptides where single or stretches of residues were interchanged between members of the NPY family were generated and tested in radioligand binding studies. Overall, substituted alanine analogues exhibited similar orders of affinities at each Y-receptor subtype with no obvious subtype-selectivity. Residues of particular interest are Leu30 which exhibited selectivity for the Y4-receptor, whereas Asp16 does not appear to play any role in ligand binding. Several chimeric peptides, e.g., [K4]pancreatic polypeptide ([K4]PP) and [RYYSA(19-23)]PP clearly showed higher affinity at the Y4 and Y5 subtypes compared to the Y1 and Y2 subtypes. In addition, the transfer of a proline residue from position 14 to 13 in peptide YY decreases its affinity at the Y1-, Y4- and Y5-receptors but is unchanged at the Y2 subtype. Combining these results, and with the help of molecular modelling, second generation chimeras were designed. The most significant improvement was achieved in chimera 2-36[K4,RYYSA(19-23)]PP where the affinity for the Y5 subtype increased by ninefold over that from NPY. Several of these compounds were also tested for their ability to stimulate food intake in a rat model. Interestingly, again 2-36[K4,RYYSA(19-23)]PP showed the most dramatic effect with a major increase on food intake over a range of doses compared to NPY suggesting a possible synergistic effect of several Y-receptors on feeding behaviour.  相似文献   

18.
The Y5 receptor has been postulated to be the main receptor mediating NPY-induced food intake in rats, based on its pharmacological profile and mRNA distribution. To further characterize this important receptor subtype, we isolated the Y5 gene in the guinea pig, a widely used laboratory animal in which all other known NPY receptors (Y1, Y2, Y4, y6) [2,13,33,37] have recently been cloned by our group. Our results show that the Y5 receptor is well conserved between species; guinea pig Y5 displays 96% overall amino acid sequence identity to human Y5, the highest identity reported for any non-primate NPY receptor orthologue, regardless of subtype. Thirteen of the twenty substitutions occur in the large third cytoplasmic loop. The identities between the guinea pig Y5 receptor and the dog, rat, and mouse Y5 receptors are 93%, 89%, and 89% respectively. When transiently expressed in EBNA cells, the guinea pig Y5 receptor showed a high binding affinity to iodinated porcine PYY with a dissociation constant of 0.41 nM. Competition experiments showed that the rank order of potency for NPY-analogues was PYY = NPY = NPY2-36 > gpPP > rPP > NPY 22-36. Thus the pharmacological profile of the guinea pig Y5 receptor agrees well with that reported for the Y5 receptor from other cloned species.  相似文献   

19.
Five neuropeptide Y receptors, the Y1-, Y2-, Y4-, Y5- and y6-subtypes, have been cloned, which belong to the rhodopsin-like G-protein-coupled, 7-transmembrane helix-spanning receptors and bind the 36-mer neuromodulator NPY (neuropeptide Y) with nanomolar affinity. In this study, the Y2-receptor subtype expressed in a human neuroblastoma cell line (SMS-KAN) and in transfected Chinese hamster ovary cells (CHO-hY2) was characterized on the protein level by using photoaffinity labeling and antireceptor antibodies. Two photoactivatable analogues of NPY were synthesized, in which a Tyr residue was substituted by the photoreactive amino acid 4-(3-trifluoromethyl)-3H-diazirin-3-ylphenylalanine ((Tmd)Phe), [Nalpha-biotinyl-Ahx2,(Tmd)Phe36]NPY (Tmd36), and the Y2-receptor subtype selective [Nalpha-biotinyl-Ahx2,Ahx5-24,(Tmd)Phe27]N PY (Tmd27). Both analogues were labeled with [3H]succinimidyl-propionate at Lys4 and bind to the Y2-receptor with affinity similar to that of the native ligand. A synthetic fragment of the second (E2) extracellular loop was used to generate subtype selective antireceptor antibodies against the Y2-receptor. Photoaffinity labeling of the receptor followed by SDS-PAGE and detection of bound radioactivity and SDS-PAGE of solubilized receptors and subsequent Western blotting revealed the same molecular masses. Two proteins correspondingly have been detected for each cell line with molecular masses of 58 +/- 4 and 50 +/- 4 kDa, respectively.  相似文献   

20.
Gehlert DR  Shaw JL 《Peptides》2007,28(2):241-249
The brain neuropeptide Neuropeptide Y (NPY) is an important modulator of a number of centrally mediated processes including feeding, anxiety-like behaviors, blood pressure and others. NPY produces its effects through at least four functional G-protein coupled receptors termed Y1, Y2, Y4 and Y5. In the brain, the Y1 and Y2 receptor subtypes are the predominant receptor population. To better understand the roles of NPY, genetically modified mice lacking NPY were produced but lacked the expected phenotypes. These mice have previously been reported to have a marked increase in Y2 receptor binding. In the present study, we found an upregulation of both Y1 and Y2 receptor binding and extended these findings to the female. These increases were as large as 10-fold or greater in many brain regions. To assess functional coupling of the receptors, we performed agonist-induced [(35)S]GTPgammaS autoradiography. In the mouse brain, the Y1/Y4/Y5 agonist Leu(31),Pro(34)-NPY increased [(35)S]GTPgammaS binding with a regional distribution consistent with that produced when labeling adjacent sections with [(125)I]-Leu(31),Pro(34)-PYY. In a few brain regions, minor increases were noted in the agonist-induced binding when comparing knock out mice to wild type. The Y2 agonist C2-NPY stimulated [(35)S]GTPgammaS binding in numerous brain areas with a regional distribution similar to the binding observed with [(125)I]-PYY3-36. Again, no major increases were noted in the functional activation of Y2 receptors between knock out and wild type mice. Therefore, the increased Y1 and Y2 binding observed in the NPY knock out mice does not represent an increase in NPY receptor mediated signaling and is likely due to an increase in spare (uncoupled) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号