首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capacitation is a prerequisite for successful fertilization by mammalian spermatozoa. This process is generally observed in vitro in defined NaHCO3-buffered media and has been shown to be associated with changes in cAMP metabolism and protein tyrosine phosphorylation. In this study, we observed that when NaHCO3 was replaced by 4-(2-hydroxyethyl)1-piperazine ethanesulfonic acid (HEPES), hamster sperm capacitation, measured as the ability of the sperm to undergo a spontaneous acrosome reaction, did not take place. Addition of 25 mM NaHCO3 to NaHCO3-free medium in which spermatozoa had been preincubated for 3.5 h, increased the percentage of spontaneous acrosome reactions from 0% to 80% in the following 4 h. Addition of anion transport blockers such as 4,4'-diiso thiocyano-2, 2'-stilbenedisulfonate (DIDS) or 4-acetomido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) to the NaHCO3-containing medium inhibited the acrosome reaction, with maximal inhibition at 600 microM, and with an EC50 of 100 microM. Increasing either extracellular or intracellular pH did not induce the acrosome reaction in NaHCO3-free medium. In contrast, addition of 500 microM dibutyryl cAMP (dbcAMP), alone or together with 100 microM 1-methyl-3-isobutylxanthine (IBMX), induced the acrosome reaction in spermatozoa incubated in NaHCO3-free medium. These compounds also partially reversed the inhibition of the acrosome reaction caused by the DIDS or SITS in complete medium. In contrast to these results, IBMX or dbcAMP did not induce acrosome reactions in cells incubated in Ca2+-free medium. When hamster sperm were incubated in the absence of NaHCO3 or in the presence of NaHCO3 and DIDS, cAMP concentrations were significantly lower than the values obtained from sperm incubated in complete medium. Protein tyrosine phosphorylation has also been shown to be highly correlated with the onset of capacitation in many species. During the first hour of capacitation, an increase in protein tyrosine phosphorylation was observed in complete medium. In the absence of NaHCO3, the increase in protein tyrosine phosphorylation was delayed for 45 min, and this delay was overcome by the addition of dbcAMP and IBMX. The induction of the acrosome reaction by calcium ionophore A23187 in NaHCO3-free medium was delayed 2 h, as compared with control medium. This delay was not observed in the presence of dbcAMP and IBMX. Taken together, these results suggest that a cAMP pathway may mediate the role of NaHCO3 in the capacitation of hamster spermatozoa and that protein tyrosine phosphorylation is necessary but not sufficient for complete capacitation.  相似文献   

2.
High-density perfusion cultivation of mammalian cells can result in elevated bioreactor CO(2) partial pressure (pCO(2)), a condition that can negatively influence growth, metabolism, productivity, and protein glycosylation. For BHK cells in a perfusion culture at 20 x 10(6) cells/mL, the bioreactor pCO(2) exceeded 225 mm Hg with approximate contributions of 25% from cellular respiration, 35% from medium NaHCO(3), and 40% from NaHCO(3) added for pH control. Recognizing the limitations to the practicality of gas sparging for CO(2) removal in perfusion systems, a strategy based on CO(2) reduction at the source was investigated. The NaHCO(3) in the medium was replaced with a MOPS-Histidine buffer, while Na(2)CO(3) replaced NaHCO(3) for pH control. These changes resulted in 63-70% pCO(2) reductions in multiple 15 L perfusion bioreactors, and were reproducible at the manufacturing-scale. Bioreactor pCO(2) values after these modifications were in the 68-85 mm Hg range, pCO(2) reductions consistent with those theoretically expected. Low bioreactor pCO(2) was accompanied by both 68-123% increased growth rates and 58-92% increased specific productivity. Bioreactor pCO(2) reduction and the resulting positive implications for cell growth and productivity were brought about by process changes that were readily implemented and robust. This philosophy of pCO(2) reduction at the source through medium and base modification should be readily applicable to large-scale fed-batch cultivation of mammalian cells.  相似文献   

3.
The possibilities of utilization of seawater enriched with ureas as the culture medium for a blue-green alga, Spirulina maxima, were investigated. Pretreatment by precipitation with NaHCO3 and (or) Na2CO3 was found essential to remove the excess amounts of Ca2+ and Mg2+ present in seawater prior to cultivation. A culture medium as good as the synthetic medium reported in the literature for the growth of S. maxima was obtained after treating seawater with NaHCO3 (19.2 g/L) at pH 9.2 and 35 degrees C for 2 h, filtering to remove precipitates, and enriching with K2HPO4 (0.5 g/L), NaNO3 (3.0 g/L), and FeSO4 (0.01 g/L). The same results were obtained by substituting a small amount (0.2 g/L or less) of either crystalline or polymerized urea for the NaNO3 in the above medium. Growth of S. maxima was inhibited at higher concentration of urea in the culture medium. The inhibition effect was due to the partial decomposition of urea into ammonia in alkali medium. Tests conducted on the 130-L cultivation open pond also confirmed that the seawater-urea medium supports growth of S. maxima as well as the best known synthetic medium.  相似文献   

4.
Using Chinese hamster ovary K1 cells, chromosomal aberration tests were carried out with formic acid, acetic acid and lactic acid, and the relationship between the pH of the medium and the clastogenic activity was examined. The medium used was Ham's F12 supplemented with 17 mM NaHCO3 and 10% fetal calf serum. All of these acids induced chromosomal aberrations at the initial pH of ca. 6.0 or below (about 10-14 mM of each acid) both with and without S9 mix. Exposure of cells to about pH 5.7 or below (about 12-16 mM of each acid) was found to be toxic. When the culture medium was first acidified with each of these acids and then neutralized to pH 6.4 or pH 7.2 with NaOH, no clastogenic activity was observed. Using F12 medium supplemented with 34 mM NaHCO3 as a buffer, no clastogenic activity was observed at doses up to 25 mM of these acids (initial pH 5.8-6.0). However, it was found that about 10% of the cells had aberrations at pH 5.7 or below (27.5-32.5 mM of each acid). Furthermore, when 30 mM HEPES was used as a buffer, chromosomal aberrations were not induced at doses up to 20 mM formic acid and acetic acid (initial pH 7.0-7.1), and at doses up to 30 mM lactic acid (initial pH 6.6). In the initial pH range of 6.4-6.7 (25-32.5 mM of each acid), chromosomal aberrations were observed. The above results show that these acids themselves are non-clastogenic, and the pseudo-positive reactions attributable to non-physiological pH could be eliminated by either neutralization of the treatment medium or enhancement of the buffering ability.  相似文献   

5.
The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO(3) and NH(4)Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl(3)-MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions - primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120-126kJ/mol and 122-132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy.  相似文献   

6.
The mechanism by which extracellular alkalosis inhibits hypoxic pulmonary vasoconstriction is unknown. We investigated whether the inhibition was due to intrapulmonary production of a vasodilator prostaglandin such as prostacyclin (PGI2). Hypoxic vasoconstriction in isolated salt-solution-perfused rat lungs was blunted by both hypocapnic and NaHCO3-induced alkalosis (perfusate pH increased from 7.3 to 7.7). The NaHCO3-induced alkalosis was accompanied by a significant increase in the perfusate level of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), an hydrolysis product of PGI2. Meclofenamate, an inhibitor of cyclooxygenase, counteracted both the blunting of hypoxic vasoconstriction and the increased level of 6-keto-PGF1 alpha. In intact anesthetized dogs, hypocapnic alkalosis (blood pH increased from 7.4 to 7.5) blunted hypoxic pulmonary vasoconstriction before but not after administration of meclofenamate. In separate cultures of bovine pulmonary artery endothelial and smooth muscle cells stimulated by bradykinin, the incubation medium levels of 6-keto-PGF1 alpha were increased by both hypocapnic and NaHCO3-induced alkalosis (medium pH increased from 7.4 to 7.7). These results suggest that inhibition of hypoxic pulmonary vasoconstriction by alkalosis is mediated at least partly by PGI2.  相似文献   

7.
为实现转小鼠金属硫蛋白基因-I聚球藻7002的高密度培养, 并将其应用于实际的重金属废水处理过程, 首先需要对培养基的成分进行优化。本文利用响应面这一多因素过程优化的有效工具, 通过全因子实验、最陡爬坡实验和中心组合实验, 对转小鼠金属硫蛋白基因-I聚球藻7002培养基的主要成分以及初始pH进行了优化。优化后的培养基组成为: NaHCO3 1.696 g/L, NaNO3 8.57 g/L, 初始pH为8.57, 其他成分同Medium A。优化条件分别在2 L和20 L气升式光生物反应器中得到了验证, 最大细胞浓度分别达到每升4.16 g干重和每升3.12 g干重, 分别比优化前提高了9倍和7倍, 从而为其产业化应用打下基础。  相似文献   

8.
研究了三种碳源Na2CO3、NaHCO3、葡萄糖对眼点拟微绿球藻生长密度和油旨含量的影响,实验结果表明相对于葡萄糖,无机碳源NaHCO3更利于眼点拟微绿球藻的生长.以NaHCO3为碳源,研究了在不同的接种密度、NaNO3浓度下,C/N对眼点拟微绿球藻生长密度和油脂含量的影响.实验结果表明,C/N对眼点拟微绿球藻生长密度的影响与接种密度和NaNO3浓度有关,在高的NaNO3浓度时,C/N对眼点拟微绿球藻生长密度的影响很小;在低的NaNO3浓度时,随着C/N比的增加,微绿球藻的生长密度先增加后下降,存在最佳的C/N比.最佳的C/N比随接种密度而变化,在接种密度为OD440=0.10时,最佳C/N比为3,当接种密度提高到OD440=0.70时,最佳C/N比增加到5.NaNO3浓度和C/N对微藻油脂含量均有较大影响,在不同的接种密度和NaNO3浓度下都表现为C/N=1时最利于微藻油脂的积累,这与卡尔文循环过程中核酮糖-1,5-二磷酸羧化酶/加氧酶的活性有关.本实验的最佳产油培养条件为以NaHCO3为碳源,初始接种密度为OD440=0.70,C/N=1∶1,CNaNO3=0.225g/L,此时油脂产率为56.7 mg/(L·d),EPA产率为6.5 mg/(L·d).  相似文献   

9.
10.
Zhao  Ziwei  Ge  Tida  Gunina  Anna  Li  Yuhong  Zhu  Zhenke  Peng  Peiqin  Wu  Jinshui  Kuzyakov  Yakov 《Plant and Soil》2019,437(1-2):137-158
Plant and Soil - Soil alkalization imposes severe ion toxicity, osmotic stress, and high pH stress to plants, inhibiting their growth and productivity. NaHCO3 is a main component of alkaline soil....  相似文献   

11.
Growth and acid metabolic products were similar when Corynebacterium pyogenes was grown aerobically or anaerobically in a serum-free medium (SFM). This indicated that C. pyogenes obtains energy for growth primarily by fermentative metabolism even under aerobic growth conditions. Growth yield was reduced by 90% in SFM minus glucose, 50% in SFM minus NaHCO3, 90% in SFM minus yeast extract, 100% in SFM minus Trypticase and yeast extract, and 30% in SFM minus haemin or Trypticase. Growth was not detectable when a known mixture of amino acids, vitamins, and nucleic acid bases were substituted for Trypticase and yeast extract in SFM; addition to the latter medium of a peptide source such as Trypticase or casitone supported good growth of the organism. When NaHCO3 was omitted from SFM and dissolved CO2 in the medium was rigorously excluded, growth was undetectable indicating that C. pyogenes has an obligate requirement for CO2 for growth. Succinate, formate and acetate were the major fermentation products in SFM, whereas in SFM minus HCO-3 or haemin, lactate was the major product and only small quantities of other acids accumulated.  相似文献   

12.
Haloalkaliphilic microorganisms isolated from soda lakes were compared in terms of the amino acid composition of total cellular protein and the reaction of a number of key enzymes to salts and pH of the medium. In the extremely halophilic bacterium Natroniella acetigena (salt-inside osmoadaptation strategy), acidic amino acids (glutamic and aspartic) made up 30.91 mol % of the total of cellular protein amino acids. In the moderate haloalkaliphiles Tindallia magadiensis, Halomonas campisalis, and Halomonas sp. AIR-1 (compatible-solutes osmoadaptation strategy), the proportion of acidic amino acids (24.36, 23.15, and 23.58 mol %, respectively) was lower than in N. acetigena but higher than in the freshwater Acetobacterium paludosum (20.77 mol %). The excess of acidic amino acids over basic amino acids (lysine and arginine) increased with the degree of halophily. The enzymes of haloalkaliphiles proved to be tolerant to salts and high pH values, although the degree of tolerance varied. The activity of N. acetigena CO dehydrogenase was maximum in the presence of 0.7 M NaCl, but it was virtually independent of the NaHCO3 concentration. The hydrogenase and CO dehydrogenase of T. magadiensis exhibited maximum activity in the absence of NaCl; the CO dehydrogenase was most active at 0.25 M NaHCO3, and hydrogenase activity was only weakly dependent on NaHCO3 in the concentration range of 0-1.2 M. The nitrate reductases of H. campisalis and Halomonas sp. AIR-2 were active in broad ranges of NaCl and KCl concentrations; the activity maxima were recorded at moderate concentrations of these salts. The pH optima of most of the studied enzymes of haloalkaliphiles were in the alkaline zone. Thus, it was shown that the amino acid composition of total cellular protein is determined by the osmoadaptation strategy employed by the bacterium. A correlation was found between the salt tolerance of enzymes and the proportion of acidic amino acids in the total cellular protein. The ability of enzymes to function at high pH values is one of the mechanisms of adaptation of microorganisms to high pH values.  相似文献   

13.
Chemically defined media allow for a variety of metabolic studies that are not possible with undefined media. A defined medium, AM3, was created to expand the experimental opportunities for investigating the fermentative metabolism of succinate-producing Actinobacillus succinogenes. AM3 is a phosphate-buffered medium containing vitamins, minerals, NH4Cl as the main nitrogen source, and glutamate, cysteine, and methionine as required amino acids. A. succinogenes growth trends and end product distributions in AM3 and rich medium fermentations were compared. The effects of NaHCO3 concentration in AM3 on end product distribution, growth rate, and metabolic rates were also examined. The A. succinogenes growth rate was 1.3 to 1.4 times higher at an NaHCO3 concentration of 25 mM than at any other NaHCO3 concentration, likely because both energy-producing metabolic branches (i.e., the succinate-producing branch and the formate-, acetate-, and ethanol-producing branch) were functioning at relatively high rates in the presence of 25 mM bicarbonate. To improve the accuracy of the A. succinogenes metabolic map, the reasons for A. succinogenes glutamate auxotrophy were examined by enzyme assays and by testing the ability of glutamate precursors to support growth. Enzyme activities were detected for glutamate synthesis that required glutamine or alpha-ketoglutarate. The inability to synthesize alpha-ketoglutarate from glucose indicates that at least two tricarboxylic acid cycle-associated enzyme activities are absent in A. succinogenes.  相似文献   

14.
P F Daniel  G Wolf 《In vitro》1975,11(6):347-353
Hamster tracheas were cultured in serum-free CMRL 1066 medium buffered with either NaHCO3 alone or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid) plus NaHCO3 in an atmosphere of 95% O2 and 5% CO2. Afther 2 days in culture, tracheas maintained in HEPES plus NaHCO3-buffered medium showed an altered surface morphology. Histiological examination after 6 days of culture with HEPES plus NaHCO3 showed the presence of only scattered clumps of cilia. Incorporation of [14C]-glucosamine into intracellular glycoproteins was reduced by 75% and into secreted glycoproteins by 54% in cultures buffered with HEPES plus NaHCO3, compared to NaHCO3-buffered cultures. Incorporation of [H]fucose into intracellular glycoproteins was also reduced, although no effect was observed on secreted glycoproteins.  相似文献   

15.
16.
分别采用NaHCO3、Na2CO3和NaOH 3种碱性试剂,3种添加方式调节循环海水养殖系统中水样的pH值。结果表明:从NaHCO3、Na2CO3和NaOH相应的滴定曲线确定突跃点pH值分别为7.25±0.04,7.22±0.01,7.11±0.01;发现添加714m g/L的NaHCO3可以有效提高并稳定水体的pH值,调节效果优于另两种碱试剂;"一次性"、"分四次"和"连续性"3种添加方式中,以"连续性"添加的水体pH值上升最平缓。要使循环海水的pH值维持在7.20~8.00之间,应在突跃点pH值7.22前夕,用连续添加的方式加入NaHCO3试剂,周期约为15~19 d。  相似文献   

17.
AIMS: Strains of Clostridium butyricum have been increasingly used as probiotics for both animals and humans. The aim of this study was to develop a growth medium for cultivating C. butyricum ZJUCB using a statistical methodology. METHODS AND RESULTS: Response surface methodology (RSM) was used to evaluate the effects of variables, namely the concentrations of the glucose, pectin, soyabean cake extract, casein, corn steep flour, ammonium sulphate, sodium bicarbonate and the medium initial pH. A fractional factorial design was applied to study the main factors that affected the growth of a probiotic strain of C. butyricum currently preserved in our lab and the central composite experimental design was adopted to derive a statistical model for optimizing the composition of the fermentation medium. The experimental results showed that the optimum fermentation medium for the growth of C. butyricum was composed of 2% glucose (w/v), 0.5% pectin (w/v), 0.2% casein (w/v), 3.98% soyabean cake extract, 0.1% (NH4)2SO4 (w/v), 0.124% NaHCO3 (w/v), 0.37% corn steep flour (w/v), 0.02% MnSO4 H2O (w/v), 0.02% MgSO4 7H2O (w/v) and 0.002% CaCl2 (w/v) at pH 7.5. CONCLUSIONS: After incubating 24 h in the optimum fermentation medium, the populations of the viable organisms were estimated to be 10(9) CFU ml(-1). In the present study, we report the optimization of a growth medium that produced increased yields using statistical approach. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of bacteria as a probiotic is showing increasing potential. The development of a growth medium that has a high yield is an obvious need, and the approach to optimizing a growth medium is innovative.  相似文献   

18.
Death and lysis of leptospirae, when cultured in asbestos-filtered bovine albumin polysorbate 80 media, was quantitated. The pathogens (virulent and avirulent) required 2 x 10(6) cells/ml to initiate growth in such media, whereas inocula of 2 to 20 cells/ml grew in control medium. Saprophytic leptospirae initiated growth from 2 cells/ml in asbestos-filtered medium as well as control medium. The adverse action of asbestos-filtered medium was not removed by storage of medium for 2 years at 25 C and was not diminished when such medium was frozen at -80 C. Washing with water, HCl and NaHCO(3)-NaCl, citric acid, and medium components did not remove the lytic activity associated with asbestos-filtered culture medium. Continuous subculture in asbestos-filtered medium was possible from large inocula; however, upon subsequent dilution and reinoculation into asbestos-filtered media, there was no evidence of acquired resistance, and all pathogens failed to grow.  相似文献   

19.
Diazotrophic heterocystous cyanobacteria Nostoc calcicola and Anabaena sp. ARM 629 were investigated for their ability to grow in presence of sodium bicarbonate (NaHCO3) or carbon dioxide (CO2) under cultural conditions. Maximum growth was observed in 75 mM NaHCO3 and 5% CO2 in N. calcicola and Anabaena ARM 629, respectively. Although their growth rate declined, N. calcicola and Anabaena sp. could tolerate upto 250 mM NaHCO3 and 20% CO2, respectively. N-methyl-N'-nitro N nitrosoguanidine induced mutants of these cyanobacteria were isolated which showed growth upto 1 M NaHCO3 (N. calcicola) or 50% CO2 (Anabaena sp.) in comparison to their wild types. The mutants also showed cross-resistance to either of the inorganic carbon compounds, which was not observed for wild type. It was concluded that mutants were altered in multiple properties enabling them to grow at elevated levels of inorganic carbon compounds.  相似文献   

20.
A new, moderately haloalkaliphilic and restricted-facultatively methylotrophic bacterium (strain Bur2T) with the ribulose monophosphate pathway of carbon assimilation is described. The isolate, which utilizes methanol, methylamine and fructose, is an aerobic, Gram-negative, asporogenous, motile short rod multiplying by binary fission. It is auxotrophic for vitamin B12, and requires NaHCO3 or NaCl for growth in alkaline medium. Cellular fatty acids profile consists primarily of straight-chain saturated C16:0, unsaturated C16:1 and C18:1 acids. The major ubiquinone is Q-8. The dominant phospholipids are phosphatidylethanolamine and phosphatidylglycerol. Diphosphatidylglycerol is also present. Optimal growth conditions are 25-29 degrees C, pH 8.5-9.0 and 2-3% (w/v) NaCl. Cells accumulate ectoine and glutamate as the main osmoprotectants. The G + C content of the DNA is 45.0 mol%. Based on 16S rDNA sequence analysis and DNA-DNA relatedness (25-35%) with type strains of marine and soda lake methylobacteria belonging to the genus Methylophaga, the novel isolate was classified as a new species of this genus and named Methylophaga natronica (VKM B-2288T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号