首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ubiquitination is an essential post-translational modification that mediates diverse cellular functions. SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) belongs to the Nedd4 family of HECT ubiquitin ligases that directly catalyzes ubiquitin conjugation onto diverse substrates. As a result, SMURF1 regulates a great variety of cellular physiologies including bone morphogenetic protein (BMP) signaling, cell migration, and planar cell polarity. Structurally, SMURF1 consists of a C2 domain, two WW domain repeats, and a catalytic HECT domain essential for its E3 ubiquitin ligase activity. This modular architecture allows for interactions with other proteins, which are either substrates or adaptors of SMURF1. Despite the increasing number of SMURF1 substrates identified, current knowledge regarding regulatory proteins and their modes of action on controlling SMURF1 activity is still limited. In this study, we employed quantitative mass spectrometry to analyze SMURF1-associated cellular complexes, and identified the deubiquitinase FAM/USP9X as a novel interacting protein for SMURF1. Through domain mapping study, we found the second WW domain of SMURF1 and the carboxyl terminus of USP9X critical for this interaction. SMURF1 is autoubiquitinated through its intrinsic HECT E3 ligase activity, and is degraded by the proteasome. USP9X association antagonizes this activity, resulting in deubiquitination and stabilization of SMURF1. In MDA-MB-231 breast cancer cells, SMURF1 expression is elevated and is required for cellular motility. USP9X stabilizes endogenous SMURF1 in MDA-MB-231 cells. Depletion of USP9X led to down-regulation of SMURF1 and significantly impaired cellular migration. Taken together, our data reveal USP9X as an important regulatory protein of SMURF1 and suggest that the association between deubiquitinase and E3 ligase may serve as a common strategy to control the cellular protein dynamics through modulating E3 ligase stability.  相似文献   

2.
Ras association (RalGDS/AF-6) domain family member RASSF5 is a non-enzymatic RAS effector super family protein, known to be involved in cell growth regulation. Expression of RASSF5 is found to be extinguished by promoter hypermethylation in different human cancers, and its ectopic expression suppresses cell proliferation and tumorigenicity. Interestingly, this role in tumorigenesis has been confounded by the fact that regulation at molecular level remains unclear and many transformed cells actually display elevated RASSF5 expression. Here, we demonstrate that E3 ubiquitin ligase Itch is a unique binding partner of RASSF5. Itch can interact with PPxY motif in RASSF5 both in vivo and in vitro through its WW domains. Importantly, the overexpression of Itch induces RASSF5 degradation by poly-ubiquitination via 26S proteasome pathway. In addition, our results indicate that the elevated levels of RASSF5 found in tumor cells due to acetylation, which restricts its binding to Itch and results in a more stable inert protein. Inhibition of RASSF5 acetylation permits its interaction with Itch and provokes proteasomal degradation. These data suggest that apart from promoter methylation, hyperacetylation could also be downregulating RASSF5 function in different human cancer. Finally, results from functional assays suggest that the overexpression of wild type, not the ligase activity defective Itch negatively regulate RASSF5-mediated G1 phase transition of cell cycle as well as apoptosis, suggesting that Itch alone is sufficient to alter RASSF5 function. Collectively, the present investigation identifies a HECT class E3 ubiquitin ligase Itch as a unique negative regulator of RASSF5, and suggests the possibility that acetylation as a potential therapeutic target for human cancer.  相似文献   

3.
EGF-mediated stimulation of the EGF receptor activates a plethora of signaling cascades followed by receptor down regulation. Preventing down regulation leads to increased mitogenic signaling and potentially, cancer. Cbl and Endophilin are two key proteins required for EGF receptor down regulation and both become ubiquitylated and subject to proteasome-mediated degradation following EGF activation, providing a negative feedback loop for EGF receptor down regulation. The mechanism of this pathway is unknown. Here, we demonstrate that treatment of cells with EGF leads to JNK-dependent phosphorylation of the ubiquitin ligase Itch, stimulating Itch ligase activity. EGF-stimulated JNK activation causes an increased interaction between Itch and the de-ubiquitylating enzyme FAM, limiting the influence of Itch auto-ubiquitylation on its own degradation. Finally, JNK activation stimulates the association of Itch with its substrates. These effects combine to cause increased ubiquitylation of Itch substrates including Endophilin and Cbl, resulting in the proteasome-dependent down regulation of these key trafficking proteins. Thus, Itch is a key regulatory locus for EGF receptor degradation.  相似文献   

4.
The COP9 signalosome (CSN) is a conserved protein complex found in all eukaryotic cells and involved in the regulation of the ubiquitin (Ub)/26S proteasome system. It binds numerous proteins, including the Ub E3 ligases and the deubiquitinating enzyme Ubp12p, the S. pombe ortholog of human USP15. We found that USP15 copurified with the human CSN complex. Isolated CSN complex exhibited protease activity that deubiquitinated poly-Ub substrates and was completely inhibited by o-phenanthroline (OPT), a metal-chelating agent. Surprisingly, the recombinant USP15 was also not able to cleave isopeptide bonds of poly-Ub chains in presence of OPT. Detailed analysis of USP sequences led to the discovery of a novel zinc (Zn) finger in USP15 and related USPs. Mutation of a single conserved cysteine residue in the predicted Zn binding motif resulted in the loss of USP15 capability to degrade poly-Ub substrates, indicating that the Zn finger is essential for the cleavage of poly-Ub chains. Moreover, pulldown experiments demonstrated diminished binding of tetra-Ub to mutated USP15. Cotransfection of USP15 and the Ub ligase Rbx1 revealed that the wild-type deubiquitinating enzyme, but not the USP15 mutant with a defective Zn finger, stabilized Rbx1 toward the Ub system, most likely by reversing poly/autoubiquitination. In summary, a functional Zn finger of USP15 is needed to maintain a conformation essential for disassembling poly-Ub chains, a prerequisite for rescuing the E3 ligase Rbx1.  相似文献   

5.
Phosphatidylinositol (PI) 4‐phosphate (PI(4)P) and its metabolizing enzymes serve important functions in cell signalling and membrane traffic. PI 4‐kinase type IIα (PI4KIIα) regulates Wnt signalling, endosomal sorting of signalling receptors, and promotes adaptor protein recruitment to endosomes and the trans‐Golgi network. Here we identify the E3 ubiquitin ligase Itch as binding partner and regulator of PI4KIIα function. Itch directly associates with and ubiquitinates PI4KIIα, and both proteins colocalize on endosomes containing Wnt‐activated frizzled 4 (Fz4) receptor. Depletion of PI4KIIα or Itch regulates Wnt signalling with corresponding changes in Fz4 internalization and degradative sorting. These findings unravel a new molecular link between phosphoinositide‐regulated endosomal membrane traffic, ubiquitin and the modulation of Wnt signalling.  相似文献   

6.
The ubiquitin-proteasome system is the major pathway of non-lysosomal intracellular protein degradation, playing an important role in a variety of cellular responses including cell division, proliferation, and apoptosis. Ubiquitin-specific protease 14 (USP14) is a component of proteasome regulatory subunit 19 S that regulates deubiquitinated proteins entering inside the proteasome core 20 S. The role of USP14 in protein degradation is still controversial. Several studies suggest that USP14 plays an inhibitory role in protein degradation. Here, in contrast, overexpression of USP14 induced I-κB degradation, which increased cytokine release in lung epithelial cells. Overexpression of HA-tagged USP14 (HA-USP14) reduced I-κB protein levels by increasing the I-κB degradation rate in mouse lung epithelial cells (MLE12). I-κB polyubiquitination was reduced in HA-USP14-overexpressed MLE12 cells, suggesting that USP14 regulates I-κB degradation by removing its ubiquitin chain, thus promoting the deubiquitinated I-κB degradation within the proteasome. Interestingly, we found that USP14 was associated with RelA, a binding partner of I-κB, suggesting that RelA is the linker between USP14 and I-κB. Lipopolysaccharide (LPS) treatment induced serine phosphorylation of USP14 as well as further reducing I-κB levels in HA-USP14-overexpressed MLE12 cells as compared with empty vector transfected cells. Further, overexpression of HA-USP14 increased the LPS-, TNFα-, or Escherichia coli-induced IL-8 release in human lung epithelial cells. This study suggests that USP14 removes the ubiquitin chain of I-κB, therefore inducing I-κB degradation and increasing cytokine release in lung epithelial cells.  相似文献   

7.
8.
Endophilin A1 is an SH3 domain-containing protein functioning in membrane trafficking on the endocytic pathway. We have identified the E3 ubiquitin ligase itch/AIP4 as an endophilin A1-binding partner. Itch belongs to the Nedd4/Rsp5p family of proteins and contains an N-terminal C2 domain, four WW domains and a catalytic HECT domain. Unlike other Nedd4/Rsp5p family members, itch possesses a short proline-rich domain that mediates its binding to the SH3 domain of endophilin A1. Itch ubiquitinates endophilin A1 and the SH3/proline-rich domain interaction facilitates this activity. Interestingly, itch co-localizes with markers of the endosomal system in a C2 domain-dependent manner and upon EGF stimulation, endophilin A1 translocates to an EGF-positive endosomal compartment where it colocalizes with itch. Moreover, EGF treatment of cells stimulates endophilin A1 ubiquitination. We have thus identified endophilin A1 as a substrate for the endosome-localized ubiquitin ligase itch. This interaction may be involved in ubiquitin-mediated sorting mechanisms operating at the level of endosomes.  相似文献   

9.
10.
Protein modification by one or more ubiquitin chains serves a critical signalling function across a wide range of cellular processes. Specificity within this system is conferred by ubiquitin E3 ligases, which target the substrates. Their activity is balanced by deubiquitylating enzymes (DUBs), which remove ubiquitin from both substrates and ligases. The RING-CH ligases were initially identified as viral immunoevasins involved in the downregulation of immunoreceptors. Their cellular orthologues, the Membrane-Associated RING-CH (MARCH) family represent a subgroup of the classical RING genes. Unlike their viral counterparts, the cellular RING-CH proteins appear highly regulated, and one of these in particular, MARCH7, was of interest because of a potential role in neuronal development and lymphocyte proliferation. Difficulties in detection and expression of this orphan ligase lead us to search for cellular cofactors involved in MARCH7 stability. In this study, we show that MARCH7 readily undergoes autoubiquitylation and associates with two deubiquitylating enzymes – ubiquitin-specific protease (USP)9X in the cytosol and USP7 in the nucleus. Exogenous expression and short interfering RNA depletion experiments demonstrate that MARCH7 can be stabilized by both USP9X and USP7, which deubiquitylate MARCH7 in the cytosol and nucleus, respectively. We therefore demonstrate compartment-specific regulation of this E3 ligase through recruitment of site-specific DUBs.  相似文献   

11.
Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome.  相似文献   

12.
The level of the Mcl-1 pro-survival protein is highly regulated, and the down-regulation of Mcl-1 expression favors the apoptotic process. Mcl-1 physically interacts with different BH3-only proteins; particularly, Noxa is involved in the modulation of Mcl-1 expression. In this study, we demonstrated that Noxa triggers the degradation of Mcl-1 at the mitochondria according to the exclusive location of Noxa at this compartment. The Noxa-induced degradation of Mcl-1 required the E3 ligase Mule, which is responsible for the polyubiquitination of Mcl-1. Because the USP9X deubiquitinase was recently demonstrated to be involved in Mcl-1 protein turnover by preventing its degradation through the removal of conjugated ubiquitin, we investigated whether Noxa affected the deubiquitination process. Interestingly, Noxa over-expression caused a decrease in the USP9X/Mcl-1 interaction associated with an increase in the Mcl-1 polyubiquitinated forms. Additionally, Noxa over-expression triggered an increase in the Mule/Mcl-1 interaction in parallel with the decrease in Mule/USP9X complex formation. Taken together, these modifications result in the degradation of Mcl-1 by the proteasome machinery. The implication of Noxa in the regulation of Mcl-1 proteasomal degradation adds complexity to this process, which is governed by multiple interactions.  相似文献   

13.
Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz(-/-) myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling.  相似文献   

14.
15.
Nrdp1 is a RING finger-containing E3 ubiquitin ligase that physically interacts with and regulates steady-state cellular levels of the ErbB3 and ErbB4 receptor tyrosine kinases and has been implicated in the degradation of the inhibitor-of-apoptosis protein BRUCE. Here we demonstrate that the Nrdp1 protein undergoes efficient proteasome-dependent degradation and that mutations in its RING finger domain that disrupt ubiquitin ligase activity enhance stability. These observations suggest that Nrdp1 self-ubiquitination and stability could play an important role in regulating the activity of this protein. Using affinity chromatography, we identified the deubiquitinating enzyme USP8 (also called Ubpy) as a protein that physically interacts with Nrdp1. Nrdp1 and USP8 could be coimmunoprecipitated, and in transfected cells USP8 specifically bound to Nrdp1 but not cbl, a RING finger E3 ligase involved in ligand-stimulated epidermal growth factor receptor down-regulation. The USP8 rhodanese and catalytic domains mediated Nrdp1 binding. USP8 markedly enhanced the stability of Nrdp1, and a point mutant that disrupts USP8 catalytic activity destabilized endogenous Nrdp1. Our results indicate that Nrdp1 is a specific target for the USP8 deubiquitinating enzyme and are consistent with a model where USP8 augments Nrdp1 activity by mediating its stabilization.  相似文献   

16.
Throughout spermatogenesis, inter-Sertoli tight junctions (TJs) that constitute the blood-testis barrier must be disassembled and reassembled to permit the timely movement of preleptotene and leptotene spermatocytes from the basal to the adluminal compartment of the seminiferous epithelium. However, the mechanism and the participating molecules that regulate the bioavailability of TJ proteins are entirely unknown. Using Sertoli cell culture, it was shown that there was an increase in occludin level, concomitant with a reduction of an E3 ubiquitin ligase, Itch, at the time when inter-Sertoli TJs were assembled. By co-immunoprecipitation, occludin was shown to associate with Itch at the TJs. A novel interaction between Itch and UBC4 (an ubiquitin-conjugating enzyme) was identified. When TJs were disrupted by dibutyryl-cAMP (db-cAMP), an increase in protein levels of Itch and UBC4 along with a significant reduction in endogenous occludin was detected. These results seemingly suggest that the interaction of Itch and UBC4 on occludin is potentially involved in regulating Sertoli TJ dynamics. Addition of a proteasome inhibitor, MG-132, into Sertoli cells cultured with db-cAMP blocked the db-cAMP-induced occludin loss in vitro. Accumulations of ubiquitin-conjugated and Itch-conjugated occludin were detected in Sertoli cells cultured in the presence of both MG-132 and db-cAMP. These results suggest that MG-132 prevented db-cAMP-induced TJ disruption by altering the rate of occludin degradation. Taken collectively, the results reported herein support the notion that db-cAMP-induced TJ disruption was mediated by an induction of Itch protein expression, which in turn triggered the ubiquitination of occludin resulting in TJ disruption.  相似文献   

17.
The ubiquitin-proteasome system catalyzes the degradation of intracellular proteins. Although ubiquitination of proteins determines their stabilities, there is growing evidence that proteasome function is also regulated. We report the functional characterization of a conserved proteasomal regulatory complex. We identified DmPI31 as a binding partner of the F box protein Nutcracker, a component of an SCF ubiquitin ligase (E3) required for caspase activation during sperm differentiation in Drosophila. DmPI31 binds Nutcracker via a conserved mechanism that is also used by mammalian FBXO7 and PI31. Nutcracker promotes DmPI31 stability, which is necessary for caspase activation, proteasome function, and sperm differentiation. DmPI31 can activate 26S proteasomes in vitro, and increasing DmPI31 levels suppresses defects caused by diminished proteasome activity in vivo. Furthermore, loss of DmPI31 function causes lethality, cell-cycle abnormalities, and defects in protein degradation, demonstrating that DmPI31 is physiologically required for normal proteasome activity.  相似文献   

18.
ATP hydrolysis is required for degradation of polyubiquitinated proteins by the 26S proteasome but is thought to play no role in proteasomal stability during the catalytic cycle. In contrast to this view, we report that ATP hydrolysis triggers rapid dissociation of the 19S regulatory particles from immunopurified 26S complexes in a manner coincident with release of the bulk of proteasome-interacting proteins. Strikingly, this mechanism leads to quantitative disassembly of the 19S into subcomplexes and free Rpn10, the polyubiquitin binding subunit. Biochemical reconstitution with purified Sic1, a prototype substrate of the Cdc34/SCF ubiquitin ligase, suggests that substrate degradation is essential for triggering the ATP hydrolysis-dependent dissociation and disassembly of the 19S and that this mechanism leads to release of degradation products. This is the first demonstration that a controlled dissociation of the 19S regulatory particles from the 26S proteasome is part of the mechanism of protein degradation.  相似文献   

19.
The inhibitors of apoptosis (IAPs) are critical regulators of apoptosis and other fundamental cellular processes. Many IAPs are RING domain-containing ubiquitin E3 ligases that control the stability of their interacting proteins. However, how IAP stability is regulated remains unclear. Here we report that USP19, a deubiquitinating enzyme, interacts with cellular IAP 1 (c-IAP1) and c-IAP2. Knockdown of USP19 decreases levels of both c-IAPs, whereas overexpression of USP19 results in a marked increase in c-IAP levels. USP19 effectively removes ubiquitin from c-IAPs in vitro, but it stabilizes c-IAPs in vivo mainly through deubiquitinase-independent mechanisms. The deubiquitinase activity is involved in the stabilization of USP19 itself, which is facilitated by USP19 self-association. Functionally, knockdown of USP19 enhances TNFα-induced caspase activation and apoptosis in a c-IAP1 and 2-dependent manner. These results suggest that the self-ubiquitin ligase activity of c-IAPs is inhibited by USP19 and implicate deubiquitinating enzymes in the regulation of IAP stability.  相似文献   

20.
The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号