首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well established that when cystine-depleted cystinotic cells are cultured in cystine-containing medium, they reaccumulate cystine within their lysosomes more rapidly than when cultured in cystine-free medium. This has been a puzzling result, since the lysosome membrane of cystinotic cells is impermeable to cystine. To probe the mechanism of cystine reaccumulation, we have measured reaccumulation in the presence of colchicine, an inhibitor of pinocytosis, or of glutamate, a competitive inhibitor of cystine transport into human fibroblasts. Colchicine had no effect, thus eliminating pinocytosis as a putative mechanism for cystine translocation from the culture medium to the lysosomes. Glutamate, however, strongly inhibited cystine reaccumulation. It is concluded that the true mechanism is as follows. 1. Exogenous cystine crosses the plasma membrane on the cystine-glutamate porter. 2. Cystine is reduced in the cytoplasm by GSH. 3. The cysteine that is generated enters the lysosome, where it becomes cystine by participating in the reduction of cystine residues during intralysosomal proteolysis, or by autoxidation.  相似文献   

2.
Thevetia peruviana is a small tree that produces several compounds with pharmaceutical application, among which peruvoside could be highlighted. However, these compounds are produced in low concentration in the plant, making it important to develop strategies such as plant cell culture and elicitation to obtain higher quantities of the desired product. In this work, cell suspension cultures of T. peruviana were established in four different culture media: Murashige–Skoog (MS), half Murashige–Skoog (half MS), Schenk–Hildebrandt (SH), and Gamborg (B5) to study their effect on cell growth. Cell growth kinetics were studied in SH medium, and the extracellular peruvoside production during the culture time was determined. The best culture medium for the establishment of cell suspension cultures was MS with a growth index of 3.17 ± 0.2 g g−1 inoculum. The cell growth kinetics showed the four characteristic growth phases of a cell culture (lag, exponential, stationary, and death), and during none of these phases was it possible to observe peruvoside production. The elicitor effect of methyl-jasmonate (MeJ) was studied in cell suspension cultures established in SH medium. The effect of MeJ concentration and the time in which it should be applied were determined. The best results were obtained at a concentration of 100 mg l−1 of MeJ applied at the beginning of the culture, which induced a peruvoside production of 8.93 mg l−1 medium. The current results are the first report of an in vitro peruvoside production system.  相似文献   

3.
Poly(3-hydroxybutyrate) (PHB) synthesis was analyzed under microaerobic conditions in a recombinant Escherichia coli arcA mutant using glycerol as the main carbon source. The effect of several additives was assessed in a semi-synthetic medium by the ‘one-factor-at-a-time’ technique. Casein amino acids (CAS) concentration was an important factor influencing both growth and PHB accumulation. Three factors exerting a statistically significant influence on PHB synthesis were selected by using a Plackett–Burman screening design [glycerol, CAS, and initial cell dry weight (CDW) concentrations] and then optimized through a Box–Wilson design. Under such optimized conditions (22.02 g l−1 glycerol, 1.78 g l−1 CAS, and 1.83 g l−1 inoculum) microaerobic batch cultures gave rise to 8.37 g l−1 CDW and 3.52 g l−1 PHB in 48 h (PHB content of 42%) in a benchtop bioreactor. Further improvements in microaerobic PHB accumulation were obtained in fed-batch cultures, in which glycerol was added to maintain its concentration above 5 g l−1. After 60 h, CDW and PHB concentration reached 21.17 and 10.81 g l−1, respectively, which results in a PHB content of 51%. Microaerobic fed-batch cultures allowed a 2.57-fold increase in volumetric productivity when compared with batch cultures. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

4.
McBean GJ 《Amino acids》2012,42(1):199-205
Astrocyte cells require cysteine as a substrate for glutamate cysteine ligase (γ-glutamylcysteine synthase; EC 6.3.2.2) catalyst of the rate-limiting step of the γ-glutamylcycle leading to formation of glutathione (l-γ-glutamyl-l-cysteinyl-glycine; GSH). In both astrocytes and glioblastoma/astrocytoma cells, the majority of cysteine originates from reduction of cystine imported by the xc cystine-glutamate exchanger. However, the transsulfuration pathway, which supplies cysteine from the indispensable amino acid, methionine, has recently been identified as a significant contributor to GSH synthesis in astrocytes. The purpose of this review is to evaluate the importance of the transsulfuration pathway in these cells, particularly in the context of a reserve pathway that channels methionine towards cysteine when the demand for glutathione is high, or under conditions in which the supply of cystine by the xc exchanger may be compromised.  相似文献   

5.
Viable cells of Micrococcus luteus secrete a proteineous growth factor (Rpf) which promotes the resuscitation of dormant, nongrowing cells to yield normal, colony-forming bacteria. When washed M. luteus cells were used as an inoculum, there was a pronounced influence of Rpf on the true lag phase and cell growth on lactate minimal medium. In the absence of Rpf, there was no increase in colony-forming units for up to 10 days. When the inoculum contained less than 105 cells ml–1, macroscopically observable M. luteus growth was not obtained in succinate minimal medium unless Rpf was added. Incubation of M. luteus in the stationary phase for 100 h resulted in a failure of the cells to grow in lactate minimal medium from inocula of small size although the viability of these cells was close to 100% as estimated using agar plates made from lactate minimal medium or rich medium. The underestimation of viable cells by the most-probable-number (MPN) method in comparsion with colony-forming units was equivalent to the requirement that at least 105 cells grown on succinate medium, 103 cells from old stationary phase, or approximately 10–500 washed cells are required per millilitre of inoculum for growth to lead to visible turbidity. The addition of Rpf in the MPN dilutions led to an increase of the viable cell numbers estimated to approximately the same levels as those determined by colony-forming units. Thus, a basic principle of microbiology –“one cell-one culture”– may not be applicable in some circumstances in which the metabolic activity of “starter” cells is not sufficient to produce enough autocrine growth factor to support cell multiplication. Received: 7 December 1998 / Accepted: 7 April 1999  相似文献   

6.
The influence of inoculum size in the production of aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON) was determined when Aspergillus parasiticus NRRL 3000 and Fusarium graminearum ITEM 124 were cultured alone and in pairs on irradiated corn kernels at 28 °C and 0.97 water activity (aw). The highest levels of AFB1 produced by A. parasiticus were produced at the lowest levels of the inoculum (103 spores/ml). No significant differences were observed in ZEN and DON production at any inoculum level during the experimental period. When A. parasiticus was co-inoculated with F. graminearum both to the same inocula (106 spores/ml), AFB1 inhibition percentage were 60, 72 and 56% at 10, 20 and 35 days of incubation respectively, while at 106 spores/ml the percentages of inhibition were 34, 84 and 93% at 10, 20 and 35 days. In the mixture cultures A. parasiticus 103 × F. graminearum 106 spores/ml the percentage of inhibition of AFB1 oscillated in 99% during all the incubation. In the interaction A. parasiticus 106 spores/ml × F. graminearum 103 spores/ml the accumulation of AFB1 decreased in 80, 94 and 86% at 10, 20 and 35 days of incubation respectively. In single culture F. graminearum was inoculated with 103 or 106 spores/ml and the highest levels of ZEN and DON were detected at 35 days of incubation. The levels oscillated in 538–622 μg/kg for ZEN and 870–834 μg/kg for DON respectively. In paired cultures there were no significant differences in the levels regardless of the spore concentrations during the incubation time. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
8.
In order to identify an optimal aeration strategy for intensifying bio-fuel ethanol production in fermentation processes where growth and production have to be managed simultaneously, we quantified the effect of aeration conditions—oxygen limited vs non limited culture (micro-aerobic vs aerobic culture)—on the dynamic behaviour of Saccharomyces cerevisiae cultivated in very high ethanol performance fed-batch cultures. Fermentation parameters and kinetics were established within a range of ethanol concentrations (up to 147 g l–1), which very few studies have addressed. Higher ethanol titres (147 vs 131 g l–1 in 45 h) and average productivity (3.3 vs 2.6 g l–1 h–1) were obtained in cultures without oxygen limitation. Compared to micro-aerobic culture, full aeration led to a 23% increase in the viable cell mass as a result of the concomitant increase in growth rate and yield, with lower ethanol inhibition. The second beneficial effect of aeration was better management of by-product production, with production of glycerol, the main by-product, being strongly reduced from 12 to 4 g l–1. We demonstrate that aeration strategy is as much a determining factor as vitamin feeding (Alfenore et al. 2002) in very high ethanol performance (147 g l–1 in 45 h) in order to achieve a highly competitive dynamic process.  相似文献   

9.
The sulfur of cystine and methionine may be removed from proteins by Raney nickel catalyst. The method has been applied to casein and egg albumin. Rat repletion studies and microbiological assays demonstrate that the desulfurized proteins retain other essential amino acids. The method may be modified to prepare a methionine-containing, cystine-free protein.  相似文献   

10.
A phenanthrene-degrading Mycobacterium sp. strain 6PY1 was grown in an aqueous/organic biphasic culture system with phenanthrene as sole carbon source. Its capacity of degradation was studied during sequential inoculum enrichments, reaching complete phenanthrene degradation at a maximim rate of 7 mg l−1 h−1. Water–oil emulsions and biofilm formation were observed in biphasic cultures after four successive enrichments. The factors influencing interfacial area in the emulsions were: the initial phenanthrene concentration, the initial inoculum size, and the silicone oil volume fraction. The results showed that the interfacial area was mainly dependent on the silicone oil/mineral salts medium ratio and the inoculum size.  相似文献   

11.
Rhodococcus strain DN22 grows on the nitramine explosive RDX as a sole nitrogen source, and is potentially useful for bioremediation of explosives-contaminated soil. In order for strain DN22 to be effectively applied in situ, inoculum cells must reach zones of RDX contamination via passive transport, a process that is difficult to predict at field-scale. We examined the effect of growth conditions on the transport of DN22 cells through sand columns, using chemostat-grown cultures. Strain DN22 formed smaller coccoid cells at low dilution rate (0.02 h−1) and larger rods at high dilution rate (0.1 h−1). Under all nutrient limitation conditions studied, smaller cells grown at low dilution rate were retained more strongly by sand columns than larger cells grown at high dilution rate. At a dilution rate of 0.05, cells from nitrate-limited cultures were retained more strongly than cells from RDX-limited or succinate-limited cultures. Breakthrough concentrations (C/C 0) from sand columns ranged from 0.04 (nitrate-limited, D=0.02 h−1) to 0.98 (succinate-limited, D=0.1 h−1). The observed strong effect of culture conditions on transport of DN22 cells emphasizes the importance of physiology studies in guiding the development of bioremediation technologies.  相似文献   

12.
Abstract— The glutathione level and the factors affecting this level were investigated in fetal rat brain cells in a primary culture. Early in the culture, the glutathione level of the brain cells decreased, but after 5 h it began to increase. This increase was not observed in a cystine-free medium and was prevented by excess glutamate. Cystine was taken up in freshly isolated brain cell suspensions, and its rate increased during the culture. The cystine uptake was mediated by a Na+-independent, glutamate-sensitive route previously found in various types of cells and designated as system xc. The uptake of cystine is a crucial factor in maintaining the glutathione level of the cells under culture, because it provides cysteine for the cells for glutathione synthesis. Cysteine was undetectable in the medium before the culture, but it appeared, though at a very low level, when the brain cells were cultured there. The source of this cysteine was the cystine in the medium. Presumably the decrease in the glutathione level of the cells in the early stage of the culture resulted from the fact that the medium did not contain cysteine. The enhancement of the cystine uptake during culture may constitute a protective mechanism against the oxidative stress to which the cultured cells are exposed. Regulation of the glutathione level in fetal brain cells in vivo by the transport of cystine and cysteine is discussed.  相似文献   

13.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

14.
 In order to determine why the activated methyl cycle is up-regulated in plants undergoing defence responses to fungal pathogens we have monitored the utilisation of methyl groups derived from methionine in cell-suspension cultures of alfalfa (Medicago sativa L.) treated for various times with fungal elicitor, by carrying out a parallel labelling study with [35S]methionine and [methyl-3H]methionine. The distribution of the two radiolabels among the medium, soluble cellular components and cell wall was then determined. In the absence of elicitor the utilisation of the two radiolabels was similar. However, in the presence of the elicitor the total incorporation of radioactivity from [methyl-3H]methionine into metabolites was far greater than from [35S]methionine, indicating that the methyl label had been utilised in methylation reactions. Elicitor treatment resulted in up to a sixfold increase in the use of 3H-methyl groups in the methylation of hydrophobic metabolites. In the period 0–24 h after elicitor treatment, increased methylation was directed largely into the synthesis of the isoflavonoid phytoalexin medicarpin and related metabolites. Newly synthesized phytoalexins were exported into the medium, while a significant proportion of the medicarpin accumulating in the cell in the early stages of elicitation was derived from the hydrolysis of its respective conjugate. Elicitor treatment also modified the incorporation of 3H-methyl groups into the cell wall. Between 0 and 24 h after elicitor treatment the methylation of pectin in the cell wall declined. After 24 h, pectin methylation recovered and was associated with an increase in the methylation of other wall-bound polysaccharide components. Since no other major metabolic sink for the increased methylation was determined we conclude that the increased activity of the activated methyl cycle during defence interactions in alfalfa is required to support phytoalexin synthesis and cell wall modifications. Received: 1 August 1996 / Accepted: 24 October 1996  相似文献   

15.
 Efficacy of silver thiosulfate (STS) in reducing ethylene-induced culture abnormalities during minimal growth conservation of microplants was studied in seven potato (Solanum tuberosum L.) genotypes. Different concentrations of STS (0, 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 μg ml–1) were tested in minimal growth medium based on MS medium supplemented with 20 g l–1 mannitol and 40 g l–1 sucrose. STS improved the microplant growth and reduced the culture abnormalities during prolonged maintenance of potato shoot cultures in vitro. The beneficial effect of STS was most prominent for number of green leaves per microplant and leaf senescence. After 16 months of storage, desirable microplant growth was observed in cultures conserved in medium containing 6.0–9.0 μg ml–1 STS. The profile of the peroxidase isozymes of conserved cultures did not show any apparent genetic variation due to the presence of STS in the conservation medium. Received: 2 September 1998 / Revision received: 20 November 1998 / Accepted: 12 December 1998  相似文献   

16.
Follicle-stimulating hormone (FSH) was produced in Chinese hamster ovary (CHO) cells using a perfusion bioreactor. Perfusion culture at 37°C yielded a high cell density but a low FSH production. To investigate the effect of culture temperature in the range of 26–37°C on cell growth and FSH production, batch cultures were performed. Lowering culture temperature below 32°C resulted in growth suppression. However, specific productivity of FSH, q FSH, increased as culture temperature decreased, and the maximum q FSH of 43.4 ng/106 cells/h was obtained at 28°C, which is 13-fold higher than that at 37°C. Based on the results obtained from batch cultures, we performed perfusion cultures with two consecutive temperatures. CHO cells were grown up to 3.2 × 107 cells/ml at 37°C and culture temperature shifted down to 28°C to obtain a high FSH titer. Soon after the maximum FSH titer of 21 μg/ml was achieved, a rapid loss of not only viable cell concentration but also cell viability was observed, probably due to the low activities of enzymes related to cell growth. Thus, the extension of production period at 28°C is critical for the enhancement of FSH production, and the use of antiapoptotic genes seems to be promising.  相似文献   

17.
An investigation was made to study the processes of fed-batch cultures of a hybridoma cell line in chemically defined protein-free media. First of all, a strong growth-associated pattern was correlated between the production of MAb and growth of cells through the kinetic studies of batch cultures, suggesting the potential effectiveness of extending the duration of exponential growth in the improvement of MAb titers. Second, compositions of amino acids in the feeding solution were balanced stepwisely according to their stoichiometrical correlations with glucose uptake in batch and fed-batch cultures. Moreover, a limiting factor screening revealed the constitutive nature of Ca2+ and Mg2+ for cell growth, and the importance of their feeding in fed-batch cultures. Finally, a fed-batch process was executed with a glucose uptake coupled feeding of balanced amino acids together with groups of nutrients and a feeding of CaCl2 and MgCl2 concentrate. The duration of exponential cell growth was extended from 70 h in batch culture and 98 h in fed-batch culture without Ca2+/Mg2+ feeding to 117 h with Ca2+/Mg2+ feeding. As a result of the prolonged exponential cell growth, the viable and total cell densities reached 7.04 × 106 and 9.12 × 106 cells ml−1, respectively. The maximal MAb concentration achieved was increased to approximately eight times of that in serum supplemented batch culture.  相似文献   

18.
The focus of this study was to test the effects of 2,4-D, sucrose, culture media and initial inocula on the development of embryogenic suspension cultures of Ocotea catharinensis Mez. (Lauraceae). Suspension cultures were established in half-strength MS medium supplemented with 2% (w/v) sucrose either in the absence or in the presence of 2.2 μM 2,4-D, when higher cell viability was achieved. Under this culture condition the maximum fresh weight increase occurred in the fourth week. The cultures were yellow and consisted of a mixture of highly cytoplasmic single cells and small cell aggregates (<0.25 mm). The best proportion of inoculum per volume of medium for suspension culture development was 5% (w/w). Suspension cultures consisting of somatic embryos at the globular and cotyledonary stages (structures ranging from 1 to 3 mm) were successfully established on half-strength MS supplemented with 2% (w/w) sucrose through repetitive embryogenesis from the desiccated mature somatic embryos used as initial inoculum. The failure to initiate liquid cultures from non-desiccated mature somatic embryos was overcome by pre-treatment with air desiccation and reduction of the water content to 6.1 g H2O g−1 dry weight.  相似文献   

19.
Statistical optimization of the biodegradation of two keratinous wastes directed by Bacillus subtilis recombinant cells was carried out by means of a response surface methodology. A Box–Behnken design was employed to predict the optimal levels of three variables namely, keratin percent, incubation time and inoculum size. Analysis of variance revealed that, only keratin percent had the highest significant effect. Canonical analysis and ridge max analysis were used to get the optimal levels of the three predictors along with the optimum levels of the responses. The optimal sets of predicted and validated levels of the three variables were [7.69% (w/v) feathers, 96.58 h and 1.28% (v/v) inoculum size] and [8% (w/v) feathers, 98.45 h, 3.9% (v/v) inoculum size] to achieve the highest levels of soluble proteins (1.25–1.7 mg/ml) and NH2-free amino groups (245.82–270.0 μmol leucine/ml), respectively upon using three optimized feathers-based media. These values represented 83.67–100% and 100% adequacy for the models of soluble proteins and NH2-free amino groups, respectively. While, [8.23% (w/v) sheep wool, 5.52% (v/v) inoculum size and 46.58 h] and [8.33% (w/v) sheep wool, 5.89% (v/v) inoculum size and 63.46 h] were the optimal sets of predicted and validated levels of the above variables to achieve the highest yields of soluble proteins (3.4–4.6 mg/ml) and NH2-free amino groups (290.9–302.0 μmol leucine/ml), respectively upon using three optimized sheep wool-based media. These values represented 100% adequacy for the models of soluble proteins and NH2-free amino groups. By the end of the optimization strategy, a fold enhancement (2.14–2.43 and 1.78–2.12) in the levels of released soluble proteins and NH2-free amino groups, respectively was obtained upon using three optimized feathers-based media. However, a fold enhancement (4.25–5.75 and 2.42–2.5) in the levels of soluble proteins and NH2-free amino groups, respectively was obtained upon using three optimized sheep wool-based media. Data would encourage pilot scale optimization of the biodegradation of these wastes.  相似文献   

20.
Acidophiles are typically isolated from sulfate-rich ecological niches yet the role of sulfur metabolism in their growth and survival is poorly defined. Studies of heterotrophically grown “Ferroplasma acidarmanus” showed that its growth requires a minimum of 100 mM of a sulfate-containing salt. Headspace gas analyses by GC/MS determined that the volatile sulfur compound emitted by active “F. acidarmanus” cultures is methanethiol. In “F. acidarmanus” cultures grown either heterotrophically or chemolithotrophically, methanethiol was produced constitutively. Radiotracer studies with 35S-labeled methionine, cysteine, and sulfate showed that all three were used in methanethiol production. Additionally, 3H-labeled methionine was incorporated into methanethiol and was probably used as a methyl-group donor. Methanethiol production in whole cell lysates supplied with SO32− indicated that NADPH-dependant sulfite reductase and methyltransferase activities were present. Cell lysates also contained enzymatic activity for methionine-γ-lyase that cleaved the side chain of either methionine to form methanethiol or cysteine to produce H2S. Since methanethiol was detected from the degradation of cysteine, it is likely that sulfide was methylated by a thiol methyltransferase. Collectively, these data demonstrate that “F. acidarmanus” produces methanethiol through the metabolism of methionine, cysteine, or sulfate. This is the first report of a methanethiol-producing acidophile, thus identifying a new contributor to the global sulfur cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号