首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Site-specific mutagenesis has been used to define the sequences required for efficient internalization of the human transferrin receptor. It has previously been shown that the sole cytoplasmic tyrosine, at position 20, is required for efficient internalization. When two other cytoplasmic aromatic residues, the phenylalanines at positions 13 and 23, are substituted with alanines internalization is also reduced. The phenylalanine 23 mutation decreases the internalization rate constant approximately threefold, and mutation of phenylalanine 13 decreases it by approximately twofold. The mutation at position 23 has as serious an effect on internalization as substitution with a nonaromatic amino acid for the single tyrosine. These results demonstrate the importance of several aromatic amino acids in maintaining efficient internalization of the transferrin receptor. Substitution of a tyrosine at a second site, for a serine at position 34, within the cytoplasmic domain of a transferrin receptor with a nonaromatic amino acid at position 20, results in a complete reversion of the internalization-defective phenotype. This reversion is completely dependent upon a tyrosine, as phenylalanine substituted at position 34 does not revert the internalization-defective phenotype. This result demonstrates that a tyrosine placed outside of its native context can still function in the internalization of the transferrin receptor, suggesting a flexibility in surrounding sequences required for efficient internalization.  相似文献   

2.
Wild-type and mutant human transferrin receptors have been expressed in chicken embryo fibroblasts using a helper-independent retroviral vector. The internalization of mutant human transferrin receptors, in which all but four of the 61 amino acids of the cytoplasmic domain had been deleted, was greatly impaired. However, when expressed at high levels, such "tailless" mutant receptors could provide chicken embryo fibroblasts with sufficient iron from diferric human transferrin to support a normal rate of growth. As the rate of recycling of the mutant receptors was not significantly different from wild-type receptors, an estimate of relative internalization rates could be obtained from the distribution of receptors inside the cell and on the cell surface under steady-state conditions. This analysis and the results of iron uptake studies both indicate that the efficiency of internalization of tailless mutant receptors is approximately 10% that of wild-type receptors. Further studies of a series of mutant receptors with different regions of the cytoplasmic domain deleted suggested that residues within a 10-amino acid region (amino acids 19-28) of the human transferrin receptor cytoplasmic domain are required for efficient endocytosis. Insertion of this region into the cytoplasmic domain of the tailless mutant receptors restored high efficiency endocytosis. The only tyrosine residue (Tyr 20) in the cytoplasmic domain of the human transferrin receptor is found within this 10-amino acid region. A mutant receptor containing glycine instead of tyrosine at position 20 was estimated to be approximately 20% as active as the wild-type receptor. We conclude that the cytoplasmic domain of the transferrin receptor contains a specific signal sequence located within amino acid residues 19-28 that determines high efficiency endocytosis. Further, Tyr 20 is an important element of that sequence.  相似文献   

3.
To examine the relationship between endosome acidification and receptor trafficking, transferrin receptor trafficking was characterized in Chinese hamster ovary cells in which endosome acidification was blocked by treatment with the specific inhibitor of the vacuolar H(+)-ATPase, bafilomycin A1. Elevating endosome pH slowed the receptor externalization rate to approximately one-half of control but did not affect receptor internalization kinetics. The slowed receptor externalization required the receptor's cytoplasmic domain and was largely eliminated by substitutions replacing either of two aromatic amino acids within the receptor's cytoplasmic YTRF internalization motif. These results confirm, using a specific inhibitor of the vacuolar proton pump, that proper endosome acidification is necessary to maintain rapid recycling of intracellular receptors back to the plasma membrane. Moreover, receptor return to the plasma membrane is slowed in the absence of proper endosome acidification by a signal-dependent mechanism involving the receptor's cytoplasmic tyrosine-containing internalization motif. These results, in conjunction with results from other studies, suggest that the mechanism for clustering receptors in plasma membrane clathrin-coated pits may be an example of a more general mechanism that determines the dynamic distribution of membrane proteins among various compartments with luminal acidification playing a crucial role in this process.  相似文献   

4.
The internalization signals of several constitutively recycling receptors have recently been identified as regions of four or six amino acids that include an aromatic residue, usually tyrosine. Here, we show that transplanted signals from the low density lipoprotein receptor (LDLR) and cation-independent mannose-6-phosphate receptor (Man-6-PR) promote rapid internalization of the transferrin receptor (TR), directly establishing that recognition signals are interchangeable, self-determined structural motifs and that signals from type I membrane proteins are active in a type II receptor. We also show that the chemical and spatial patterns of critical residues in both four- and six-residue internalization motifs are consistent with a tight turn structure. A six-residue LDLR signal is needed for activity in TR, suggesting that an amino-terminal aromatic side chain is obligatory. In contrast, the carboxy-terminal aromatic side chain in the TR signal can be replaced by a large hydrophobic residue. Thus, internalization signals apparently require an aromatic amino-terminal residue and either an aromatic or large hydrophobic carboxy-terminal residue rather than a conserved tyrosine per se. Consistent with this conclusion, predicted internalization signals from the poly-Ig receptor, YSAF, and asialoglycoprotein receptor (ASGPR) subunit H1, YQDL, also promote internalization of TR.  相似文献   

5.
It has been reported that the sequence Tyr20-X-Arg-Phe23 present within the cytoplasmic tail of the transferrin receptor may represent a tyrosine internalization signal (Collawn, J.F., Stangel, M., Kuhn, L.A., Esekogwu, V., Jing, S., Trowbridge, I.S., and Tainer, J. A. (1990) Cell 63, 1061-1072). However, as Tyr20 is not conserved between species (Alvarez, E., Gironès, N., and Davis, R. J. (1990) Biochem. J. 267, 31-35), the functional role of the putative tyrosine internalization signal is not clear. To address this question, we constructed a series of 32 deletions and point mutations within the cytoplasmic tail of the human transferrin receptor. The effect of these mutations on the apparent first order rate constant for receptor endocytosis was examined. It was found that the region of the cytoplasmic tail that is proximal to the transmembrane domain (residues 28-58) is dispensable for rapid endocytosis. In contrast, the distal region of the cytoplasmic tail (residues 1-27) was found to be both necessary and sufficient for the rapid internalization of the transferrin receptor. The region identified includes Tyr20-X-Arg-Phe23, but is significantly larger than this tetrapeptide. It is therefore likely that structural information in addition to the proposed tyrosine internalization signal is required for endocytosis. To test this hypothesis, we investigated whether a heterologous tyrosine internalization signal (from the low density lipoprotein receptor) could function to cause the rapid endocytosis of the transferrin receptor. It was observed that this heterologous tyrosine internalization signal did not allow rapid endocytosis. We conclude that the putative tyrosine internalization signal (Tyr20-Thr-Arg-Phe23) is not sufficient to determine rapid endocytosis of the transferrin receptor. The data reported here indicate that the transferrin receptor internalization signal is formed by a larger cytoplasmic tail structure located at the amino terminus of the receptor.  相似文献   

6.
Previous studies have demonstrated that the amino-terminal cytoplasmic domain of GLUT4 contains a phenylalanine-based targeting motif that determines its steady state distribution between the surface and the interior of cells (Piper, R. C., C. Tai, P. Kuleza, S. Pang, D. Warnock, J. Baenziger, J. W. Slot, H. J. Geuze, C. Puri, and D. E. James. 1993. J. Cell Biol. 121:1221). To directly measure the effect that the GLUT4 amino terminus has on internalization and subsequent recycling back to the cell surface, we constructed chimeras in which this sequence was substituted for the amino-terminal cytoplasmic domain of the human transferrin receptor. The chimeras were stably transfected into Chinese hamster ovary cells and their endocytic behavior characterized. The GLUT4-transferrin receptor chimera was recycled back to the cell surface with a rate similar to the transferrin receptor, indicating that the GLUT4 sequence was not promoting intracellular retention of the chimera. The GLUT4-transferrin receptor chimera was internalized at half the rate of the transferrin receptor. Substitution of an alanine for phenylalanine at position 5 slowed internalization of the chimera by twofold, to a level characteristic of bulk membrane internalization. However, substitution of a tyrosine increased the rate of internalization to the level of the transferrin receptor. Neither of these substitutions significantly altered the rate at which the chimeras were recycled back to the cell surface. These results demonstrate that the major function of the GLUT4 amino-terminal domain is to promote the effective internalization of the protein from the cell surface, via a functional phenylalanine-based internalization motif, rather than retention of the transporter within intracellular structures.  相似文献   

7.
Rapid internalization of the cell surface low density lipoprotein (LDL) receptor requires the first 22 amino acids of the cytoplasmic domain (residues 790-811), which must include an aromatic residue at position 807. In the human LDL receptor, this position is part of a tetrameric sequence, NPVY. A similar tetramer, NPXY (where X stands for any amino acid), is conserved in LDL receptors from six species (including Xenopus laevis) and in two members of the LDL receptor gene family, human LDL receptor-related protein and rat GP330. To determine whether the NPXY sequence is necessary for coated pit-mediated internalization, we used oligonucleotide-directed mutagenesis to substitute alanines for individual amino acids in the cytoplasmic tail of the human LDL receptor. Substitution of alanine for Asn804, Pro805, or Tyr807 (but not Val806) markedly reduced internalization. Only one other amino acid in the cytoplasmic 22-mer (Phe802) was important for internalization. A review of published data revealed NPXY sequences in cytoplasmic domains of at least 10 other cell surface proteins, including tyrosine kinase-linked receptors of the epidermal growth factor and insulin receptor family, the beta-subunits of three integrin receptors, and the amyloid A4 precursor protein. This occurrence is much more frequent than would be expected by chance alone. The possibility of a conditional role for the NPXY sequence in ligand-independent internalization of these proteins is discussed.  相似文献   

8.
The transferrin receptor (TR) mediates cellular iron uptake by bringing about the endocytosis of transferrin. We investigated whether the cytoplasmic domain of 65 N-terminal amino acids or phosphorylated sites within this domain constitute a structure that is required for TR endocytosis. To test this hypothesis, we modified the cytoplasmic serine residues or introduced a deletion of 36 amino acids by in vitro mutagenesis of a cDNA expression vector for human TR. Upon expression in transfected mouse Ltk- cells, both the wild-type and phosphorylation site mutant receptors mediated transferrin internalization, whereas the truncated receptor did not. These results provide evidence that the cytoplasmic domain, or part of it, is essential for internalization of the TR, but argue against a role for receptor phosphorylation in endocytosis.  相似文献   

9.
The signal for the rapid internalization of the cation-independent mannose 6-phosphate/insulin-like growth factor-II receptor has been previously localized to the inner half of the 163-amino acid cytoplasmic tail, including tyrosine 24 and tyrosine 26 (Lobel, P., Fujimoto, K., Ye, R. D., Griffiths, G., and Kornfeld, S. (1989) Cell 57, 787-796). To define this signal more precisely, we generated a series of truncation and substitution mutants and analyzed them for their ability to mediate the endocytosis of extracellular lysosomal enzymes. Mutant receptors containing cytoplasmic domains of 29 or more amino acids functioned normally in endocytosis whereas a mutant receptor with a 28-amino acid cytoplasmic domain was internalized extremely slowly. Alanine scanning of the region between amino acids 19 and 30 identified tyrosine 26 and valine 29 as the most important residues for rapid receptor internalization. Tyrosine 24 and lysine 28 also contributed to the signal while the other amino acids were not critical. The tyrosine residues could be substituted with phenylalanines with no loss of activity, indicating the requirement for an aromatic residue in these positions rather than tyrosine specifically. Conservative substitutions of arginine or histidine for lysine 28 also preserved the internalization signal. These results indicate that the sequence Tyr-Lys-Tyr-Ser-Lys-Val serves as the internalization signal for the mannose 6-phosphate/insulin-like growth factor-II receptor. The crucial elements of this sequence are present in the cytoplasmic tails of a number of other membrane receptors and proteins known to undergo rapid internalization.  相似文献   

10.
Lysosomal acid phosphatase (LAP) is rapidly internalized from the cell surface due to a tyrosine-containing internalization signal in its 19 amino acid cytoplasmic tail. Measuring the internalization of a series of LAP cytoplasmic tail truncation and substitution mutants revealed that the N-terminal 12 amino acids of the cytoplasmic tail are sufficient for rapid endocytosis and that the hexapeptide 411-PGYRHV-416 is the tyrosine-containing internalization signal. Truncation and substitution mutants of amino acid residues following Val416 can prevent internalization even though these residues do not belong to the internalization signal. It was shown recently that part of the LAP cytoplasmic tail peptide corresponding to 410-PPGY-413 forms a well-ordered beta turn structure in solution. Two-dimensional NMR spectroscopy of two modified LAP tail peptides, in which the single tyrosine was substituted either by phenylalanine or by alanine, revealed that the tendency to form a beta turn is reduced by 25% in the phenylalanine-containing peptide and by approximately 50% in the alanine-containing mutant peptide. Our results suggest, that in the short cytoplasmic tail of LAP tyrosine is required for stabilization of the right turn and that the aromatic ring system of the tyrosine residue is a contact point to the putative cytoplasmic receptor.  相似文献   

11.
The rate of receptor-mediated endocytosis of diferric 125I-transferrin by Chinese-hamster ovary cells expressing human transferrin receptors was compared with the rate measured for cells expressing hamster transferrin receptors. It was observed that the rate of endocytosis of the human transferrin receptor was significantly higher than that for the hamster receptor. In order to examine the molecular basis for the difference between the observed rates of endocytosis, a cDNA clone corresponding to the cytoplasmic domain of the hamster receptor was isolated. The predicted primary sequence of the cytoplasmic domain of the hamster transferrin receptor is identical with that of the human receptor, except at position 20, where a tyrosine residue in the human sequence is replaced with a cysteine residue. To test the hypothesis that this structural change in the receptor is related to the difference in the rate of internalization, we used site-directed mutagenesis to examine the effect of the replacement of tyrosine-20 with a cysteine residue in the human transferrin receptor. It was observed that the substitution of tyrosine-20 with cysteine caused a 60% inhibition of the rate of iron accumulation by cells incubated with [59Fe]diferric transferrin. No significant difference between the rate of internalization of the mutant (cysteine-20) human receptor and the hamster receptor was observed. Thus the substitution of tyrosine-20 with a cysteine residue can account for the difference between the rate of endocytosis of the human and hamster transferrin receptors.  相似文献   

12.
The signal for rapid internalization of the mannose 6-phosphate/insulin-like growth factor II receptor has been localized to the sequence Tyr-Lys-Tyr-Ser-Lys-Val in positions 24-29 of its 163-residue cytoplasmic tail. Most of the activity of this signal is mediated by the carboxyl 4 amino acids, especially Tyr26 and Val29 (Canfield, W. M., Johnson, K. F., Ye, R. D., Gregory, W. and Kornfeld, S. (1991) J. Biol. Chem. 266, 5682-5688). In this study, we have tested the effect of a series of mutations on the internalization rate of a mutant receptor that contains a 29-amino acid cytoplasmic tail terminating with the 4-amino acid internalization sequence Tyr-Ser-Lys-Val. Replacement of Tyr26 with Phe or Trp gave rise to mutant receptors that were internalized at 10% the wild-type rate, while receptors with Ala, Leu, Ile, Val, or Asn at this position were totally inactive. Val29 could be replaced by other large hydrophobic residues (Phe, Leu, Ile, or Met) with no loss of activity, but the presence of Ala, Gly, Arg, Gln, or Tyr in this position inactivated the signal. Ser27 could be effectively replaced by many different amino acids, but not by Pro or Gly. However, Gly27 could be tolerated if the residues at positions 28 and 29 were also changed. A change in the 2-residue spacing between Tyr26 and Val29 destroyed the signal. These data show that the essential elements of this signal are an aromatic residue, especially a Tyr in the first position, separated from a large hydrophobic residue in the last position by 2 amino acids. The residues in positions 2 and 3 of the signal may have a modulating effect on its activity. The Tyr-Ser-Lys-Val signal could be moved to a more proximal region of the cytoplasmic tail with only a modest loss of activity. In addition, the signal could be effectively replaced by the putative 4-residue signals of seven other receptors and membrane proteins known to undergo rapid endocytosis, including the Tyr-Thr-Arg-Phe sequence of the transferrin receptor, a Type II membrane protein. These results are compatible with the 4-residue signals of this type being interchangeable, even among Type I and Type II membrane proteins.  相似文献   

13.
Class A scavenger receptors (SR-A) are transmembrane glycoproteins that mediate both ligand internalization and cell adhesion. Previous studies have identified specific amino acids in the cytoplasmic tail of SR-A that regulate receptor internalization; however, the role of cytoplasmic domains in regulating cell adhesion has not been addressed. To investigate the role of cytoplasmic domains in SR-A-mediated adhesion and to address whether SR-A-mediated adhesion and internalization require distinct cytoplasmic domains, different SR-A constructs were stably expressed in human embryonic kidney (HEK 293) cells. Deleting the entire cytoplasmic tail (SR-A Delta 1-55) greatly reduced receptor protein abundance. Retaining the six amino acids proximal to the membrane (SR-A Delta 1-49) restored receptor protein abundance. Although SR-A Delta 1-49 localized to the cell surface, cells expressing this receptor failed to internalize the ligand acetylated low density lipoprotein. Replacing the cytoplasmic tail of SR-A with that of the transferrin receptor (TfR/SR-A) resulted in retention of the chimeric receptor in the endoplasmic reticulum suggesting a specific role for the membrane-proximal amino acids in trafficking SR-A from the endoplasmic reticulum to the Golgi. Like SR-A expressing cells, cells expressing SR-A Delta 1-49 displayed increased spreading and adhesion, demonstrating that the membrane-proximal amino acids were sufficient for SR-A-mediated cell adhesion. Together, our results indicate a critical role for the membrane-proximal amino acids in SR-A trafficking and demonstrate that SR-A-mediated adhesion and internalization require distinct cytoplasmic domains.  相似文献   

14.
The LH/CG receptor is a member of the family of G protein-coupled receptors and consists of a large N-terminal extracellular domain (which is responsible for binding hormone) attached to a region that spans the plasma membrane seven times, ending with an intracellularly located C-terminus. Binding of LH or human CG (hCG) to the LH/CG receptor causes a stimulation of adenylyl cyclase, presumably via activation of Gs. The binding of hormone also leads to its subsequent internalization by receptor-mediated endocytosis. In order to investigate the role of the cytoplasmic tail of this receptor in these events, we prepared a series of mutants in which progressively larger portions of the cytoplasmic tail were deleted. Deletion of 58 amino acids from the C-terminus, in which only 11 cytoplasmic residues remain, resulted in a receptor that was not expressed on the plasma membrane. Receptors rat LHR (rLHR)-t653 and rLHR-t631, in which 21 or 43 amino acids were removed, respectively, were properly expressed. These results suggest that a region(s) between residues 616 and 631 of the rLH/CG receptor are required for proper insertion and/or targeting of the receptor into the plasma membrane. Cells expressing rLHR-t653 or rLHR-t631 bound hCG with the same high affinity as cells expressing the full-length receptor, and basal levels of cAMP were the same among the cells. However, cells expressing the truncated receptors responded to hCG with approximately 2-fold greater levels of maximal cAMP accumulation than cells expressing the full-length receptor. Deletion of up to 43 amino acids from the C-terminus of the rLH/CG receptor had no deleterious effect on hCG internalization. In fact, mutants lacking 21 and 43 amino acids exhibited progressively faster rates of hCG internalization as compared to the full-length receptor. Once internalized, hCG was also degraded at a faster rate in cells expressing the truncated LH/CG receptors. Since hCG-stimulated cAMP stimulation and hCG internalization are retained by rLHR-t631, it can be concluded that the residues, not necessarily the same, required for these functions reside within the 26 amino acids of the cytoplasmic tail closest to the seventh transmembrane helix and/or residues within the intracellular loops. Our data show, however, that both hCG-stimulated cAMP production and hCG internalization are enhanced by the removal of the distal portion of the cytoplasmic tail.  相似文献   

15.
Treatment with the phosphatidylinositol 3-kinase inhibitor wortmannin promotes approximately 30% decrease in the steady-state number of cell-surface transferrin receptors. This effect is rapid and dose dependent, with maximal down-regulation elicited with 30 min of treatment and with an IC50 approximately 25 nM wortmannin. Wortmannin-treated cells display an increased endocytic rate constant for transferrin internalization and decreased exocytic rate constants for transferrin recycling. In addition to these effects in vivo, wortmannin is a potent inhibitor (IC50 approximately 15 nM) of a cell-free assay that detects the delivery of endocytosed probes into a common compartment. Inhibition of the in vitro assay involves the inactivation of a membrane-associated factor that can be recruited onto the surface of vesicles from the cytosol. Its effects on the cell-free assay suggest that wortmannin inhibits receptor sorting and/or vesicle budding required for delivery of endocytosed material to "mixing" endosomes. This idea is consistent with morphological changes induced by wortmannin, which include the formation of enlarged transferrin-containing structures and the disruption of the perinuclear endosomal compartment. However, the differential effects of wortmannin, specifically increased transferrin receptor internalization and inhibition of receptor recycling, implicate a role for phosphatidylinositol 3-kinase activity in multiple sorting events in the transferrin receptor's membrane traffic pathway.  相似文献   

16.
Occupancy-induced down-regulation of cell surface epidermal growth factor (EGF) receptors attenuates signal transduction. To define mechanisms through which down-regulation of this class of growth factor receptors occurs, we have investigated the relative roles of ligand-induced internalization and recycling in this process. Occupied, kinase-active EGF receptors were internalized through a high affinity, saturable endocytic system at rates up to 10-fold faster than empty receptors. In contrast, full length EGF receptors lacking tyrosine kinase activity underwent internalization at a rate independent of occupancy. This "kinase-independent" internalization rate appeared to reflect constitutive receptor internalization since it was similar to the internalization rate of both receptors lacking a cytoplasmic domain and of antibodies bound to empty receptors. EGF internalized by either kinase-active or kinase-inactive receptors was efficiently recycled and was found within endosomes containing recycling transferrin receptors. However, targeting of internalized receptors to lysosomes did not require receptor kinase activity. All receptors that displayed ligand-induced internalization also underwent down-regulation, indicating that the proximal cause of down-regulation is occupancy-induced endocytosis. Tyrosine kinase activity greatly enhances this process by stabilizing receptor association with the endocytic apparatus.  相似文献   

17.
The parameters regulating the internalization and recycling of transferrin-specific receptors were determined in guinea pig leukemic B lymphocytes, in the absence or presence of ligand. We show that after the cells were purified, 45-56% of the total receptors were on the cell surface. In the absence of transferrin, unoccupied receptors are quickly internalized (rate constant, 0.12 min-1) whereas their recycling is much slower (rate constant, 0.026 min-1). This difference between endocytosis and recycling rates leads to a balanced receptor distribution with only 22% of the total receptors outside after incubation of the cells for 20-30 min at 37 degrees C. The internalization rate of occupied receptors, measured in the presence of transferrin is faster (rate constant, 0.21 min-1) than that of unoccupied receptors calculated in the absence of transferrin (0.12 min-1; see above). On the other hand, mere binding of transferrin to its receptor, without internalization, arrested by cytoplasm acidification, is sufficient to induce a large increase (by a factor of seven) in the recycling rate of unoccupied internal receptors from 0.026 min-1 to 0.17 min-1. Thus, in these lymphocytes, transferrin mobilizes internal receptors by modifying the kinetic rates of internalization and recycling, leading to a new equilibrium between external and internal receptors.  相似文献   

18.
To perform vectorial secretory and transport functions that are critical for the survival of the organism, epithelial cells sort plasma membrane proteins into polarized apical and basolateral domains. Sorting occurs post-synthetically, in the trans Golgi network (TGN) or after internalization from the cell surface in recycling endosomes, and is mediated by apical and basolateral sorting signals embedded in the protein structure. Basolateral sorting signals include tyrosine motifs in the cytoplasmic domain that are structurally similar to signals involved in receptor internalization by clathrin-coated pits. Recently, an epithelial-specific adaptor protein complex, AP1B, was identified. AP-1B recognizes a subset of basolateral tyrosine motifs through its mu 1B subunit. Here, we characterized the post-synthetic and post-endocytic sorting of the fast recycling low density lipoprotein receptor (LDLR) and transferrin receptor (TfR) in LLC-PK1 cells, which lack mu 1B and mis-sort both receptors to the apical surface. Targeting and recycling assays in LLC-PK1 cells, before and after transfection with mu 1B, and in MDCK cells, which express mu 1B constitutively, suggest that AP1B sorts basolateral proteins post-endocytically.  相似文献   

19.
20.
Insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase, is dynamically retained within the endosomal compartment of fibroblasts. The characteristics of this dynamic retention are rapid internalization from the plasma membrane and slow recycling back to the cell surface. These specialized trafficking kinetics result in <15% of IRAP on the cell surface at steady state, compared with 35% of the transferrin receptor, another transmembrane protein that traffics between endosomes and the cell surface. Here we demonstrate that a 29-amino acid region of IRAP's cytoplasmic domain (residues 56--84) is necessary and sufficient to promote trafficking characteristic of IRAP. A di-leucine sequence and a cluster of acidic amino acids within this region are essential elements of the motif that slows IRAP recycling. Rapid internalization requires any two of three distinct motifs: M(15,16), DED(64--66), and LL(76,77). The DED and LL sequences are part of the motif that regulates recycling, demonstrating that this motif is bifunctional. In this study we used horseradish peroxidase quenching of fluorescence to demonstrate that IRAP is dynamically retained within the transferrin receptor-containing general endosomal recycling compartment. Therefore, our data demonstrate that motifs similar to those that determine targeting among distinct membrane compartments can also regulate the rate of transport of proteins from endosomal compartments. We propose a model for dynamic retention in which IRAP is transported from the general endosomal recycling compartment in specialized, slowly budding recycling vesicles that are distinct from those that mediate rapid recycling back to the surface (e.g., transferrin receptor-containing transport vesicles). It is likely that the dynamic retention of IRAP is an example of a general mechanism for regulating the distribution of proteins between the surface and interior of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号