首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diagonal electrophoresis/chromatography was described 40 years ago and was used to isolate specific sets of peptides from simple peptide mixtures such as protease digests of purified proteins. Recently, we have adapted the core technology of diagonal chromatography so that the technique can be used in so-called gel-free, peptide-centric proteome studies. Here we review the different procedures we have developed over the past few years, sorting of methionyl, cysteinyl, amino terminal, and phosphorylated peptides. We illustrate the power of the technique, termed COFRADIC (combined fractional diagonal chromatography), in the case of a peptide-centric analysis of a sputum sol phase sample of a patient suffering from chronic obstructive pulmonary disease (COPD). We were able to identify an unexpectedly high number of intracellular proteins next to known biomarkers.  相似文献   

2.
In recent years, procedures for selecting the N-terminal peptides of proteins with analysis by mass spectrometry have been established to characterize protease-mediated cleavage and protein α-N-acetylation on a proteomic level. As a pioneering technology, N-terminal combined fractional diagonal chromatography (COFRADIC) has been used in numerous studies in which these protein modifications were investigated. Derivatization of primary amines--which can include stable isotope labeling--occurs before trypsin digestion so that cleavage occurs after arginine residues. Strong cation exchange (SCX) chromatography results in the removal of most of the internal peptides. Diagonal, reversed-phase peptide chromatography, in which the two runs are separated by reaction with 2,4,6-trinitrobenzenesulfonic acid, results in the removal of the C-terminal peptides and remaining internal peptides and the fractionation of the sample. We describe here the fully matured N-terminal COFRADIC protocol as it is currently routinely used, including the most substantial improvements (including treatment with glutamine cyclotransferase and pyroglutamyl aminopeptidase to remove pyroglutamate before SCX, and a sample pooling scheme to reduce the overall number of liquid chromatography-tandem mass spectrometry analyses) that were made since its original publication. Completion of the N-terminal COFRADIC procedure takes ~5 d.  相似文献   

3.
4.
Current non-gel techniques for analyzing proteomes rely heavily on mass spectrometric analysis of enzymatically digested protein mixtures. Prior to analysis, a highly complex peptide mixture is either separated on a multidimensional chromatographic system or it is first reduced in complexity by isolating sets of representative peptides. Recently, we developed a peptide isolation procedure based on diagonal electrophoresis and diagonal chromatography. We call it combined fractional diagonal chromatography (COFRADIC). In previous experiments, we used COFRADIC to identify more than 800 Escherichia coli proteins by tandem mass spectrometric (MS/MS) analysis of isolated methionine-containing peptides. Here, we describe a diagonal method to isolate N-terminal peptides. This reduces the complexity of the peptide sample, because each protein has one N terminus and is thus represented by only one peptide. In this new procedure, free amino groups in proteins are first blocked by acetylation and then digested with trypsin. After reverse-phase (RP) chromatographic fractionation of the generated peptide mixture, internal peptides are blocked using 2,4,6-trinitrobenzenesulfonic acid (TNBS); they display a strong hydrophobic shift and therefore segregate from the unaltered N-terminal peptides during a second identical separation step. N-terminal peptides can thereby be specifically collected for further liquid chromatography (LC)-MS/MS analysis. Omitting the acetylation step results in the isolation of non-lysine-containing N-terminal peptides from in vivo blocked proteins.  相似文献   

5.
We previously described a proteome-wide, peptide-centric procedure for sorting protein N-terminal peptides and used these peptides as readouts for protease degradome and xenoproteome studies. This procedure is part of a repertoire of gel-free techniques known as COmbined FRActional DIagonal Chromatography (COFRADIC) and highly enriches for alpha-amino-blocked peptides, including alpha-amino-acetylated protein N-terminal peptides. Here, we introduce two additional steps that significantly increase the fraction of such proteome-informative, N-terminal peptides: strong cation exchange (SCX) segregation of alpha-amino-blocked and alpha-amino-free peptides and an enzymatic step liberating pyroglutamyl peptides for 2,4,6-trinitrobenzenesulphonic acid (TNBS) modification and thus COFRADIC sorting. The SCX step reduces the complexity of the analyte mixture by enriching N-terminal peptides and depleting alpha-amino-free internal peptides as well as proline-starting peptides prior to COFRADIC. The action of pyroglutamyl aminopeptidases prior to the first COFRADIC peptide separation results in greatly diminishing numbers of contaminating pyroglutamyl peptides in peptide maps. We further show that now close to 95% of all COFRADIC-sorted peptides are alpha-amino-acetylated and, using the same amount of starting material, our novel procedure leads to an increased number of protein identifications.  相似文献   

6.
Here we report on a novel peptide library based method for HLA class II binding motif identification. The approach is based on water soluble HLA class II molecules and soluble dedicated peptide libraries. A high number of different synthetic peptides are competing to interact with a limited amount of HLA molecules, giving a selective force in the binding. The peptide libraries can be designed so that the sequence length, the alignment of binding registers, the numbers and composition of random positions are controlled, and also modified amino acids can be included. Selected library peptides bound to HLA are then isolated by size exclusion chromatography and sequenced by tandem mass spectrometry online coupled to liquid chromatography. The MS/MS data are subsequently searched against a library defined database using a search engine such as Mascot, followed by manual inspection of the results. We used two dodecamer and two decamer peptide libraries and HLA-DQ2.5 to test possibilities and limits of this method. The selected sequences which we identified in the fraction eluted from HLA-DQ2.5 showed a higher average of their predicted binding affinity values compared to the original peptide library. The eluted sequences fit very well with the previously described HLA-DQ2.5 peptide binding motif. This novel method, limited by library complexity and sensitivity of mass spectrometry, allows the analysis of several thousand synthetic sequences concomitantly in a simple water soluble format.  相似文献   

7.
The conditions for tryptic digestion and subsequent peptide mapping of the ATP-dependent proteolysis cofactor ubiquitin and its derivatives are described. In aqueous solution, the native ubiquitin which is composed of 76 amino acids undergoes only a single cleavage at arginine-74. Full digestion of ubiquitin was obtained in 6.5 M urea, although cleavages at lysine-33 and arginine-74 were slow. Peptide mapping was achieved by reverse-phase high-performance liquid chromatography with a C18 column using a trifluoroacetic acid/triethylamine buffer system and acetonitrile as eluants. The peptides, separated using a linear gradient, were identified by amino acid analysis. Derivatives analyzed by this method include oxidized, monoiodotyrosyl, and diiodotyrosyl ubiquitin. This technique will be useful in examining peptides of chemically modified ubiquitin with respect to extent and specificity of modification. In addition, this technique will be useful in comparing ubiquitin peptides of different organisms.  相似文献   

8.
It is an established fact that allelic variation and post-translational modifications create different variants of proteins, which are observed as isoelectric and size subspecies in two-dimensional gel based proteomics. Here we explore the stromal proteome of spinach and Arabidopsis chloroplast and show that clustering of mass spectra is a useful tool for investigating such variants and detecting modified peptides with amino acid substitutions or post-translational modifications. This study employs data mining by hierarchical clustering of MALDI-MS spectra, using the web version of the SPECLUST program (http://bioinfo.thep.lu.se/speclust.html). The tool can also be used to remove peaks of contaminating proteins and to improve protein identification, especially for species without a fully sequenced genome. Mutually exclusive peptide peaks within a cluster provide a good starting point for MS/MS investigation of modified peptides, here exemplified by the identification of an A to E substitution that accounts for the isoelectric heterogeneity in protein isoforms.  相似文献   

9.
Protein identification by interrogation of databases requires a comprehensive compilation of modified amino acids forms. Here, we describe the chemical oxidation of carboxyamidomethyl cysteine to the sulfoxide and sulfone forms, species that may add more complexity to peptide analyses. They can be easily distinguished by tandem mass spectrometry (MS/MS) due to their characteristic pattern of side chain neutral eliminations either from the parent ion or ion series that generate dehydroalanine as detected by MS(3). This finding was supported by the MS(n) spectra recorded for a peptide isolated from a mixture of tryptic peptides and for a derivatized/oxidized synthetic peptide with a different sequence. These modifications and their diagnostic neutral losses should be included in the list of chemical modifications and in algorithms designed for the automatic sequencing of peptides and database searching.  相似文献   

10.
Lee YH  Kim MS  Choie WS  Min HK  Lee SW 《Proteomics》2004,4(6):1684-1694
Recently, various chemical modifications of peptides have been incorporated into mass spectrometric analyses of proteome samples, predominantly in conjunction with matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), to facilitate de novo sequencing of peptides. In this work, we investigate systematically the utility of N-terminal sulfonation of tryptic peptides by 4-sulfophenyl isothiocyanate (SPITC) for proteome analysis by capillary reverse-phase liquid chromatography/tandem mass spectrometry (cRPLC/MS/MS). The experimental conditions for the sulfonation were carefully adjusted so that SPITC reacts selectively with the N-terminal amino groups, even in the presence of the epsilon-amino groups of lysine residues. Mass spectrometric analyses of the modified peptides by cRPLC/MS/MS indicated that SPITC derivatization proceeded toward near completion under the experimental conditions employed here. The SPITC-derivatized peptides underwent facile fragmentation, predominantly resulting in y-series ions in the MS/MS spectra. Combining SPITC derivatization and cRPLC/MS/MS analyses facilitated the acquisition of sequence information for lysine-terminated tryptic peptides as well as arginine-terminated peptides without the need for additional peptide pretreatment, such as guanidination of lysine amino group. This process alleviated the biased detection of arginine-terminated peptides that is often observed in MALDI MS experiments. We will discuss the utility of the technique as a viable method for proteome analyses and present examples of its application in analyzing samples having different levels of complexity.  相似文献   

11.
A novel computational approach, termed Search for Modified Peptides (SeMoP), for the unrestricted discovery and verification of peptide modifications in shotgun proteomic experiments using low resolution ion trap MS/MS spectra is presented. Various peptide modifications, including post-translational modifications, sequence polymorphisms, as well as sample handling-induced changes, can be identified using this approach. SeMoP utilizes a three-step strategy: (1) a standard database search to identify proteins in a sample; (2) an unrestricted search for modifications using a newly developed algorithm; and (3) a second standard database search targeted to specific modifications found using the unrestricted search. This targeted approach provides verification of discovered modifications and, due to increased sensitivity, a general increase in the number of peptides with the specific modification. The feasibility of the overall strategy has been first demonstrated in the analysis of 65 plasma proteins. Various sample handling induced modifications, such as beta-elimination of disulfide bridges and pyrocarbamidomethylation, as well as biologically induced modifications, such as phosphorylation and methylation, have been detected. A subsequent targeted Sequest search has been used to verify selected modifications, and a 4-fold increase in the number of modified peptides was obtained. In a second application, 1367 proteins of a cervical cancer cell line were processed, leading to detection of several novel amino acid substitutions. By conducting the search against a database of peptides derived from proteins with decoy sequences, a false discovery rate of less than 5% for the unrestricted search resulted. SeMoP is shown to be an effective and easily implemented approach for the discovery and verification of peptide modifications.  相似文献   

12.
Modified peptides constitute a sub-population among the tryptic peptides analyzed in LC–MS based shotgun proteomics experiments. For larger proteomes including the human proteome, the tryptic peptide pool is very large, which necessitates some form of sample fractionation. By carefully choosing the sample fractionation and separation methods applied as shown here for the combination of narrow-range immobilized pH gradient isoelectric focusing (IPG-IEF) and nanoUPLC–MS, significantly increased information content can be achieved. Relatively low standard deviations were obtained for such multidimensional separations in terms of peptide pI (<0.05 pI units) and retention time (<0.3 min for a 350 min gradient) for a selection of highly complex proteomics samples. Using narrow-range IPG-IEF, experimental and predicted pI were in relative good agreement. However, based on our data, retention time prediction algorithms need further improvements in accuracy to match state-of-the-art reversed-phase chromatography performance. General trends of peptide pI shifts induced by common modifications including deamidations and N-terminal modifications are described. Deamidations of glutamine and asparagines shift peptide pI by approximately 1.5 pI units, making the peptides more acidic. Additionally, a novel pI shift (+~0.4 pI units) was found associated with dethiomethyl Met modifications. Further, the effects of these modifications as well as methionine oxidation were investigated in terms of experimentally observed retention time shifts in the chromatographic separation step. Clearly, post-translational modification-induced influences on peptide pI and retention time can be accurately and reproducibly measured using narrow-range IPG-IEF and high-performance nanoLC–MS. Even at modest mass accuracy (±50 ppm), the inclusion of peptide pI (±0.2 pI units) and/or retention time (±20 min) criteria are highly informative for human proteome analyses. The applications of using this information to identify post-translationally modified peptides and improve data analysis workflows are discussed.  相似文献   

13.
In the last few years mass spectrometry has become the method of choice for characterization of post-translationally modified proteins. Whereas most protein chemical modifications are binary in the sense that only one change can be associated with a given residue, many different oligosaccharides can be attached to a glycosylation site residue. The detailed characterization of glycoproteins in complex biological samples is extremely challenging. However, information on N-glycosylation can be gained at an intermediary level. Here we demonstrate a procedure for mapping N-glycosylation sites in complex mixtures by reducing sample complexity and enriching glycoprotein content. Glycosylated proteins are selected by an initial lectin chromatography step and digested with endoproteinase Lys-C. Glycosylated peptides are then selected from the digest mixture by a second lectin chromatography step. The glycan components are removed with N-glycosidase F and the peptides digested with trypsin before analysis by on-line reversed-phase liquid chromatography mass spectrometry. Using two different lectins, concanavalin A and wheat germ agglutinin, this procedure was applied to human serum and a total of 86 N-glycosylation sites in 77 proteins were identified.  相似文献   

14.
A method to obtain peptide maps of basic proteins on acetic acid/urea (AU) -polyacrylamide minislab gels is presented. Basic proteins such as the histones are digested with Staphylococcus aureus V8 protease in the stacking gel (pH 4) of an AU-polyacrylamide minislab gel. As the peptides are resolved in the AU minislab gel on the basis of charge and size, it is possible to separate peptides containing modified amino acids from the unmodified, parent peptide. The peptide(s) containing the modified residue may be identified following electrophoresis on a second-dimension sodium dodecyl sulfate-polyacrylamide minislab gel. This procedure will be useful for comparing histone variants and for the study of histone modifications.  相似文献   

15.
Three chemical specific cleavage reactions, one for the carboxyl side of aspartyl peptide bonds, one for the carboxyl side of asparaginyl peptide bonds and another for the amino side of seryl/threonyl peptide bonds have been recently established. Additionally, these reactions simultaneously react on several post-translationally modified groups in peptides or proteins. The modified groups cover the external modifications N-formyl, N-acetyl, N-pyroglutamyi residues and C-terminal-alpha amide, as well as the internal modifications such as O-acetyl serine, phosphorylated serine/tyrosine, sulfonylated tyrosine, glycosylated serine/threonine and glycosylated asparagine. These three cleavage reactions relate to key amino acids for modifications, deamidation for asparagine, phosphorylation and acetylation for serine, and glycosylation for asparagine, serine and threonine. The chemical reactions on these modifications change the peptide mapping pattern, and information from these reactions may contribute characterization and location of post-translational modified groups in the protein.  相似文献   

16.
Liu H  Lin D  Yates JR 《BioTechniques》2002,32(4):898, 900, 902 passim
Proteomics is the study of all or part of the protein complement of genes in an organism, often involving the analysis of complex protein/peptide samples. Such complex samples are beyond the separation capacity of 1-D separation techniques. This review describes several multidimensional separations for proteins and peptides. First, several variants of 2-D liquid chromatography (2DLC) are reviewed, including coupled size exclusion-reversed phase, ion exchange-reversed phase, and reversed phase-reversed phase chromatography. Second, we describe coupled liquid chromatography and capillary electrophoresis methods. Finally, a multidimensional protein identification technique (MudPIT) is explained in detail. Each of the described techniques has a much higher separation capacity than 1-D methods and can potentially be automated for high-throughput experiments. In particular, MudPIT takes advantage of both the high separation capacity of 2DLC and the powerful peptide characterization ability of tandem mass spectrometry to analyze complex protein samples. Additional applications and developments of multidimensional liquid separations for proteomics are expected in the future.  相似文献   

17.
Characterization of protein N-terminal peptides supports the quality assessment of data derived from genomic sequences (e.g., the correct assignment of start codons) and hints to in vivo N-terminal modifications such as N-terminal acetylation and removal of the initiator methionine. The current work represents the first large-scale identification of N-terminal peptides from prokaryotes, of the two halophilic euryarchaeota Halobacterium salinarum and Natronomonas pharaonis. Two methods were used that specifically allow the characterization of protein N-terminal peptides: combined fractional diagonal chromatography (COFRADIC) and strong cation exchange chromatography (SCX), both known to enrich for N-terminally blocked peptides. In addition to these specific methods, N-terminal peptide identifications were extracted from our previous genome-wide proteomic data. Combining all data, 606 N-terminal peptides from Hbt. salinarum and 328 from Nmn. pharaonis were reliably identified. These results constitute the largest available dataset holding identified and characterized protein N-termini for prokaryotes (archaea and bacteria). They allowed the validation/improvement of start codon assignments as automatic gene finders tend to misassign start codons for GC-rich genomes. In addition, the dataset allowed unravelling N-terminal protein maturation in archaea, showing that 60% of the proteins undergo methionine cleavage and that-in contrast to current knowledge-Nalpha-acetylation is common in the archaeal domain of life with 13-18% of the proteins being Nalpha-acetylated. The protein sets described in this paper are available by FTP and might be used as reference sets to test the performance of new gene finders.  相似文献   

18.
Using a partially purified HL-60 tyrosine protein kinase, we designed a new HPLC method for the measurement of tyrosylphosphorylation of angiotensin II. The present method uses reversed-phase chromatography and elution involving an acetonitrile gradient containing the counterion tetrabutylammonium phosphate. The peptide substrate, [gamma-32P]ATP, the cosubstrate, and 32P-labeled phosphorylated peptides were quantified online by measuring the Cerenkov effect. Injections, separation, and analysis were performed automatically. Furthermore, the method permits a direct visualization of peptide substrate phosphorylation and has a potentially universal application; i.e., it is usable with any kind of peptide in a given range of hydrophobicity. This assay was designed for specificity studies, which are of major importance at the molecular level, in order to understand active site topology and the biophysical requirements of tyrosine protein kinases. As examples, data on chromatography separations of angiotensin II analogs (five to ten amino acids in length) are presented, as well as for other peptide substrates such as RR-src, the pp60src autophosphorylation site-derived peptide, and minigastrin. We adapted our experimental conditions to accommodate crude extracts from HL-60 cells. Preliminary experiments clearly indicated that other biological sources can be used. Despite the existence of numerous methods published in the literature for the measurement of kinase activities, the method presented herein is the only one to the authors' knowledge that can be used in and has been assessed for specificity studies. Peptides do not require particular features such as charged residues (i.e., arginine) to be analyzed.  相似文献   

19.
Advancement in proteomics research relies on the development of new, innovative tools for identifying and characterizing proteins. Here, we describe a protocol for analyzing peptides and proteins on a chromatographic timescale by coupling nanoflow reverse-phase (RP) liquid chromatography (LC) to electron-transfer dissociation (ETD) mass spectrometry. For this protocol, proteins can be proteolytically digested before ETD analysis, although digestion is not necessary for all applications. Proteins 相似文献   

20.
C A Browne  H P Bennett  S Solomon 《Biochemistry》1981,20(16):4538-4546
A novel procedure utilizing reversed-phase high-performance liquid chromatography for the extraction and purification of peptides from biological tissues has been applied to the isolation of corticotropin-like intermediary lobe peptide (CLIP) and alpha-melanocyte-stimulating hormone (alpha-MSH) from the neurointermediary lobe of the rat pituitary. The isolation and characterization of two major forms of CLIP and two major forms of alpha-MSH are described. The isolated peptides have been identified by using enzymatic digestions and peptide mapping. The main form of ClIP is a peptide which has been modified by phosphorylation of the serine residue at position 31. This is the first peptide of endocrine origin reported to be modified in such a manner. A non-phosphorylated form of CLIP was also present at lower concentrations. The main form of alpha-MSH was found to be N,-O-diacetyl-alpha-MSH, with the more familiar mono-N-acetyl-alpha-MSH present to a much smaller extent. Thus, in the rat neurointermediary lobe, the two main corticotropin-related peptides present are mostly in modified forms which are the result of posttranslational modifications. It is only by the use of methodology such as that described in this paper that small alterations in peptide structure may be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号