首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glucose is commonly admitted to be the main substrate for brain energy requirement. However, it has been recently proposed that lactate, generated from glucose via glycolysis, would be the oxidative substrate for neurons, particularly during neuronal activation, according to a mechanism called the astrocyte-neuron lactate shuttle hypothesis (ANLSH). In that mechanism, glutamate released in the synaptic cleft during brain activation is taken up by astrocytes. This uptake, via the glutamate/Na(+) transporter, induces the entry of sodium, which is then excluded from the astrocytes via the Na(+)/K(+) ATPase. This exclusion consumes ATP, which stimulates glycolysis and thus lactate formation in astrocytes. This lactate is then transferred to neurons where it is utilized as oxidative substrate. This review tries to gather the recent evidences that support this hypothesis and presents the contribution of NMR to this matter.  相似文献   

2.
Human mesenchymal stem cells (hMSCs) are bone marrow-derived stromal cells, which play a role in tumor progression. We have shown earlier that breast cancer cells secrete higher levels of interleukin-6 (IL-6) under hypoxia, leading to the recruitment of hMSCs towards hypoxic tumor cells. We found that (i) MDA-MB-231 cells secrete significantly higher levels of lactate (3-fold more) under hypoxia (1% O(2)) than under 20% O(2) and (ii) lactate recruits hMSCs towards tumor cells by activating signaling pathways to enhance migration. The mRNA and protein expression of functional MCT1 in hMSCs is increased in response to lactate exposure. Thus, we hypothesized that hMSCs and stromal carcinoma associated fibroblasts (CAFs) in the tumor microenvironment have the capacity to take up lactate expelled from tumor cells and use it as a source of energy. Our (13)C NMR spectroscopic measurements indicate that (13)C-lactate is converted to (13)C-alpha ketoglutarate in hMSCs and CAFs supporting this hypothesis. To our knowledge this is the first in vitro model system demonstrating that hMSCs and CAFs can utilize lactate produced by tumor cells.  相似文献   

3.
4.
5.
Activity-dependent release of ATP from synapses, axons and glia activates purinergic membrane receptors that modulate intracellular calcium and cyclic AMP. This enables glia to detect neural activity and communicate among other glial cells by releasing ATP through membrane channels and vesicles. Through purinergic signalling, impulse activity regulates glial proliferation, motility, survival, differentiation and myelination, and facilitates interactions between neurons, and vascular and immune system cells. Interactions among purinergic, growth factor and cytokine signalling regulate synaptic strength, development and responses to injury. We review the involvement of ATP and adenosine receptors in neuron-glia signalling, including the release and hydrolysis of ATP, how the receptors signal, the pharmacological tools used to study them, and their functional significance.  相似文献   

6.
7.
Recent advances in the field of neuron-glia interactions were presented at the 27th International Symposium of the University of Montreal Center de Recherche en Sciences Neruologiques. Topics included synaptogenesis, regulation of synaptic strength by glia at the neuromuscular junction and hippocampus; myelin formation, structure, and maintenance; involvement of glia in nervous-system response to injury, hypoxia, and ischemia; neurogenesis and apoptosis, and microglial involvement in chronic pain.  相似文献   

8.
Selective communication between cultured mammalian cells was detected as selectivity in metabolic cooperation. Whilst the majority of the cell types examined (human skin fibroblast, PC13, G3, Don, PyY) showed metabolic cooperation at almost all (>95%) of their homotypic cell-to-cell contacts, they did not necessarily show cooperation at such a high proportion of their heterotypic contacts. Less than 10% of G3/human fibroblast contacts, and usually less than 30% of G3/PC13 contacts were observed to be positive for metabolic cooperation. L cells differed from these other cell types in that they formed permeable junctions at a greater proportion of their heterotypic cell-to-cell contacts (contacts between L and PyY cells) than their homotypic contacts. We question why it was that the contacts between any two poorly-compatible cell types were positive for metabolic cooperation in only a small proportion of cases. We could find no indication that this phenomenon was attributable to heterogeneity within the cell stocks. Time course studies upon PC13 and G3 cells showed that the proportion of cooperation-positive contacts was not constant but that it continued to increase over many hours of co-culture. In comparing the homotypic and heterotypic interactions of these cell types, selectivity manifested as a difference in the rate of appearance of permeable junctions. We discuss possible explanations for these findings.  相似文献   

9.
Cells that grow together respond heterogeneously to stress even when they are genetically similar. Metabolism, a key determinant of cellular stress tolerance, may be one source of this phenotypic heterogeneity, however, this relationship is largely unclear. We used self‐establishing metabolically cooperating (SeMeCo) yeast communities, in which metabolic cooperation can be followed on the basis of genotype, as a model to dissect the role of metabolic cooperation in single‐cell heterogeneity. Cells within SeMeCo communities showed to be highly heterogeneous in their stress tolerance, while the survival of each cell under heat or oxidative stress, was strongly determined by its metabolic specialization. This heterogeneity emerged for all metabolite exchange interactions studied (histidine, leucine, uracil, and methionine) as well as oxidant (H2O2, diamide) and heat stress treatments. In contrast, the SeMeCo community collectively showed to be similarly tolerant to stress as wild‐type populations. Moreover, stress heterogeneity did not establish as sole consequence of metabolic genotype (auxotrophic background) of the single cell, but was observed only for cells that cooperated according to their metabolic capacity. We therefore conclude that phenotypic heterogeneity and cell to cell differences in stress tolerance are emergent properties when cells cooperate in metabolism.  相似文献   

10.
Intercellular communication as detected by ionic coupling and gap junction formation has been reported previously in phytohemagglutinin (PHA)-stimulated lymphocyte cultures. PHA-stimulated mixtures of normal and hypoxanthine phosphoribosyl-transferase (HPRT) deficient lymphocytes did not exhibit metabolic cooperation when incubated with [3H]hypoxanthine. These observations suggest that there may be selectivity for compounds transferred by lymphocyte junctions during intercellular communication.  相似文献   

11.
Cancer cells cooperate with stromal cells and use their environment to promote tumor growth. Energy production depends on nutrient availability and O2 concentration. Well-oxygenated cells are highly proliferative and reorient the glucose metabolism towards biosynthesis, whereas glutamine oxidation replenishes the TCA cycle coupled with OXPHOS-ATP production. Glucose, glutamine and alanine transformations sustain nucleotide and fatty acid synthesis. In contrast, hypoxic cells slow down their proliferation, enhance glycolysis to produce ATP and reject lactate which is recycled as fuel by normoxic cells. Thus, glucose is spared for biosynthesis and/or for hypoxic cell function. Environmental cells, such as fibroblasts and adipocytes, serve as food donors for cancer cells, which reject waste products (CO2, H+, ammoniac, polyamines…) promoting EMT, invasion, angiogenesis and proliferation. This metabolic-coupling can be considered as a form of commensalism whereby non-malignant cells support the growth of cancer cells. Understanding these cellular cooperations within tumors may be a source of inspiration to develop new anti-cancer agents.  相似文献   

12.
Metabolites can be exchanged between cells in culture by direct transfer from the cytoplasm of one cell to that of another in a process known as metabolic cooperation. Most mammalian cell lines are able to transfer small molecules directly between adjacent cells in this way and are consequently mec+; however, a small number are defective in this ability (mec-). Results obtained from somatic cell hybrids formed between combinations of these cells have shown that the four different cell lines examined in this study can be divided into at least two different complementation groups on the basis of their ability to transfer 3H-labeled nucleotides to adjacent cells. Two of the cell lines clearly fall into a single complementation group.  相似文献   

13.
Catharanthus roseus produces a wide range of secondary metabolites, some of which present high therapeutic values such as antitumoral monoterpenoid indole alkaloids (MIAs), vinblastine and vincristine, and the hypotensive MIA, ajmalicine. We have recently shown that a complex multicellular organisation of the MIA biosynthetic pathway occurred in C. roseus aerial organs. In particular, the final steps of both the secoiridoid–monoterpene and indole pathways specifically occurred in the epidermis of leaves and petals. Chorismate is the common precursor of indole and phenylpropanoid pathways. In an attempt to better map the spatio-temporal organisation of diverse secondary metabolisms in Catharanthus roseus aerial organs, we studied the expression pattern of genes encoding enzymes of the phenylpropanoid pathway (phenylalanine ammonia-lyase [PAL, E.C. 4.3.1.5], cinnamate 4-hydroxylase [C4H, E.C. 1.14.13.11] and chalcone synthase [CHS, E.C. 2.3.1.74]). In situ hybridisation experiments revealed that CrPAL and CrC4H were specifically localised to lignifying xylem, whereas CrPAL, CrC4H and CrCHS were specifically expressed in the flavonoid-rich upper epidermis. Interestingly, these three genes were co-expressed in the epidermis (at least the upper, adaxial one) together with three MIA-related genes, indicating that single epidermis cells were capable of concomitantly producing a wide range of diverse secondary metabolites (e.g. flavonoïds, indoles, secoiridoid–monoterpenes and MIAs). These results, and data showing co-accumulation of flavonoids and alkaloids in single cells of C. roseus cell lines, indicated the spatio-temporal feasibility of putative common regulation mechanisms for the expression of these genes involved in at least four distinct secondary metabolisms.  相似文献   

14.
Previous research has suggested that the spontaneous display of positive emotion may be a reliable signal of cooperative tendency in humans. Consistent with this proposition, several studies have found that self-reported cooperators indeed display higher levels of positive emotions than non-cooperators. In this study, we defined cooperators and non-cooperators in terms of their behavior as the proposer in an ultimatum game, and video-taped their facial expressions as they faced unfair offers as a responder. A detailed analysis of the facial expressions displayed by participants revealed that cooperators displayed greater amounts of emotional expressions, not limited to positive emotional expression, when responding to unfair offers in the ultimatum game. These results suggest that cooperators may be more emotionally expressive than non-cooperators. We speculate that emotional expressivity can be a more reliable signal of cooperativeness than the display of positive emotion alone.  相似文献   

15.
16.
17.
Scleroderma (systemic sclerosis; SSc) is characterised by fibrosis of the skin and internal organs in the context of autoimmunity and vascular perturbation. Overproduction of extracellular matrix components and loss of specialised epithelial structures are analogous to the process of scar formation after tissue injury. Fibroblasts are the resident cells of connective tissue that become activated at sites of damage and are likely to be important effector cells in SSc. Differentiation into myofibroblasts is a hallmark process, although the mechanisms and cellular origins of this important fibroblastic cell are still unclear. This article reviews fibroblast biology in the context of SSc and highlights the potentially important place of fibroblast effector cells in fibrosis. Moreover, the heterogeneity of fibroblast properties, multiplicity of regulatory pathways and diversity of origin for myofibroblasts may underpin clinical diversity in SSc, and provide novel avenues for targeted therapy.  相似文献   

18.
Caudal hindbrain "sensing" of glucoprivation activates central neural mechanisms that enhance systemic glucose availability, but the critical molecular variable(s) linked to detection of local metabolic insufficiency remains unclear. Central neurons and glia are metabolically coupled via intercellular trafficking of the glycolytic product lactate as a substrate for neuronal oxidative respiration. Using complementary in vivo models for experimental manipulation of lactate availability within the caudal hindbrain, we investigated the hypothesis that lactate insufficiency may be monitored by local metabolically "sensitive" neurons as an indicator of central nervous system energy imbalance. The data show that caudal fourth ventricular (CV4) administration of the monocarboxylate transporter inhibitor alpha-cyano-4-hydroxycinnamate (4CIN) resulted in dose-dependent increases in blood glucose in euglycemic animals, whereas the degree and duration of hypoglycemia elicited by insulin administration were exacerbated by exogenous L-lactate delivery to the CV4. Immunocytochemical processing of the hindbrain for the inducible c-fos gene product Fos revealed that 4CIN enhanced Fos immunoreactivity in the dorsal vagal complex (DVC), e.g., the nucleus of the solitary tract and dorsal vagal motor nucleus, and adjacent area postrema, sites where cells characterized by unique sensitivity to diminished glucose and/or glycolytic intermediate/end product levels reside, and in the medial vestibular nucleus (MV), and that CV4 L-lactate infusion increased Fos labeling within the DVC and MV after insulin-induced hypoglycemia. Together, these results support the view that lactate is a critical monitored metabolic variable in caudal hindbrain detection of energy imbalance resulting from glucoprivation and that diminished uptake and/or oxidative catabolism of this fuel activates neural mechanisms that increase systemic glucose availability.  相似文献   

19.
20.
The objective of this study was to evaluate serum lactate dehydrogenase isoenzyme patterns in open and pregnant Holstein and Hereford cows as a method of detecting pregnancy. Serum samples were collected from 26 Holstein and 13 Hereford cows and lactate dehydrogenase isoenzyme patterns were examined by electrophoresis and quantitated by scanning densitometry. Lactate dehydrogenase isoenzyme(4) and LDH(5) were found in higher concentration (P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号