首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutation to chloramphenicol resistance (Cmlr) stimulates production of macrolide avermectin in Streptomyces avermitilis; production starts in the early stationary phase. By labeling in vivo, the Cmlr mutation was shown to stimulate phosphorylation of Ser and Thr in several proteins in the same growth phase. Autophosphorylation of active protein kinases (PK) was analyzed in gel after one- or two-dimensional PAGE for the original S. avermitilis strain ATCC 31272, its Cmlr mutant, and a Cmls revertant. An increase in in vivo phosphorylation was associated with an increase in autophosphorylation of Ser/Thr-PK 41K, 45K, 52K, 62K, and 85K and complete suppression of autophosphorylation of PK 66K. Comparison of the PK molecular weights and pI with the parameters deduced for putative PK encoded by S. avermitilis genes identified the 41K, 45K, 52K, 62K, and 85K proteins as pkn 24, pkn 32, pkn 13, pkn12, and pkn5, respectively. Prenylamine lactate, a modulator of calmodulin-dependent processes, substantially reduced the avermectin production, impaired the Cml resistance, and selectively inhibited Ca2+-dependent PK 85K in the Cmlr mutant. It was assumed that PK 85K is involved in regulating the avermectin production.  相似文献   

2.
The dynamics of serine/threonine protein kinase activity during the growth of the wild-type Streptomyces avermitilis strain and its chloramphenicol-resistant (Cmlr) pleiotropic mutant with an enhanced production of avermectins was studied by measuring the transfer of radiolabeled phosphate from [gamma-32P]ATP to the serine and threonine residues of proteins in cell-free extracts. In both of the strains studied, radiolabeled phosphate was found to incorporate into polypeptides with molecular masses of 32, 35, 41, 68, 75, 79, 83, and 137 kDa; however, the degree and the dynamics of phosphorylation of particular peptides were different in these strains. The differences revealed could not be accounted for by the interference of ATPases or phosphoprotein phosphatases. The data obtained may be interpreted as evidence that Cmlr mutation activates the protein kinase signalling system of S. avermitilis cells in the early stationary growth phase and thus enhances the production of avermectins and leads to some other physiological changes in the mutant strain.  相似文献   

3.
One potentially important mechanism for regulating class Ia phosphoinositide 3-kinase (PI 3-kinase) activity is autophosphorylation of the p85 alpha adapter subunit on Ser608 by the intrinsic protein kinase activity of the p110 catalytic subunit, as this downregulates the lipid kinase activity in vitro. Here we investigate whether this phosphorylation can occur in vivo. We find that p110 alpha phosphorylates p85 alpha Ser608 in vivo with significant stoichiometry. However, p110 beta is far less efficient at phosphorylating p85 alpha Ser608, identifying a potential difference in the mechanisms by which these two isoforms are regulated. The p85 alpha Ser608 phosphorylation was increased by treatment with insulin, platelet-derived growth factor, and the phosphatase inhibitor okadaic acid. The functional effects of this phosphorylation are highlighted by mutation of Ser608, which results in reduced lipid kinase activity and reduced association of the p110 alpha catalytic subunit with p85 alpha. The importance of this phosphorylation was further highlighted by the finding that autophosphorylation on Ser608 was impaired, while lipid kinase activity was increased, in a p85 alpha mutant recently discovered in human tumors. These results provide the first evidence that phosphorylation of Ser608 plays a role as a shutoff switch in growth factor signaling and contributes to the differences in functional properties of different PI 3-kinase isoforms in vivo.  相似文献   

4.
AfsKav is a eukaryotic-type serine/threonine protein kinase, required for sporulation and avermectin production in Streptomyces avermitilis. In terms of their ability to complement SJW4001 (DeltaafsK-av), afsK-av mutants T165A and T168A were not functional, whereas mutants T165D and T168D retained their ability, indicating that Thr-165 and Thr-168 are the phosphorylation sites required for the role of AfsKav. Expression of the S-adenosylmethione synthetase gene promoted avermectin production in the wild-type S. avermitilis, yet not in the mutant harboring T168D or T165D, demonstrating that tandem phosphorylation on Thr-165 and Thr-168 in AfsKav is the mechanism modulating avermectin production in response to S-adenosylmethione accumulation in S. avermitilis.  相似文献   

5.
【目的】通过诱变筛选技术选育阿维菌素高产突变株,对其发酵培养基进行响应面优化,提高阿维菌素产量。【方法】采用常压室温等离子体(ARTP)诱变技术,结合链霉抗性和卡那霉素抗性筛选法及96深孔板高通量筛选法,筛选阿维菌素高产株。在单因素实验的基础上,应用响应面分析法对其发酵培养基进行优化,最后确定最佳培养基配方。【结果】获得一株遗传性状稳定的阿维菌素高产株K-1A6,其阿维菌素产量达到4.22 g/L,比出发菌株9-39提高了23.4%,在最佳培养基中阿维菌素产量达到5.36 g/L,较优化前提高了27.01%。【结论】通过对阿维链霉菌9-39菌株进行ARTP诱变筛选及发酵培养基优化研究能显著提高阿维菌素的产量。  相似文献   

6.
General strategies to obtain inactive kinases have utilized mutation of key conserved residues in the kinase core, and the equivalent Lys72 in cAMP-dependent kinase has often been used to generate a "dead" kinase. Here, we have analyzed the consequences of this mutation on kinase structure and function. Mutation of Lys72 to histidine (K72H) generated an inactive enzyme, which was unphosphorylated. Treatment with an exogenous kinase (PDK-1) resulted in a mutant that was phosphorylated only at Thr197 and remained inactive but nevertheless capable of binding ATP. Ser338 in K72H cannot be autophosphorylated, nor can it be phosphorylated in an intermolecular process by active wild type C-subunit. The Lys72 mutant, once phosphorylated on Thr197, can bind with high affinity to the RIalpha subunits. Thus a dead kinase can still act as a scaffold for binding substrates and inhibitors; it is only phosphoryl transfer that is defective. Using a potent inhibitor of C-subunit activity, H-89, Escherichia coli-expressed C-subunit was also obtained in its unphosphorylated state. This protein is able to mature into its active form in the presence of PDK-1 and is able to undergo secondary autophosphorylation on Ser338. Unlike the H-89-treated wild type protein, the mutant protein (K72H) cannot undergo the subsequent cis autophosphorylation following phosphorylation at Thr197. Using these two substrates and mammalian-expressed PDK-1, we can elucidate a possible two-step process for the activation of the C-subunit: initial phosphorylation on the activation loop at Thr197 by PDK-1, or a PDK-1-like enzyme, followed by second cis autophosphorylation step at Ser338.  相似文献   

7.
The protozoan parasite Entamoeba histolytica can invade both intestinal and extra intestinal tissues resulting in amoebiasis. During the process of invasion E. histolytica ingests red blood and host cells using phagocytic processes. Though phagocytosis is considered to be a key virulence determinant, the mechanism is not very well understood in E. histolytica. We have recently demonstrated that a novel C2 domain-containing protein kinase, EhC2PK is involved in the initiation of erythrophagocytosis. Because cells overexpressing the kinase-dead mutant of EhC2PK displayed a reduction in erythrophagocytosis, it appears that kinase activity is necessary for initiation. Biochemical analysis showed that EhC2PK is an unusual Mn(2+)-dependent serine kinase. It has a trans-autophosphorylated site at Ser(428) as revealed by mass spectrometric and biochemical analysis. The autophosphorylation defective mutants (S428A, KDΔC) showed a reduction in auto and substrate phosphorylation. Time kinetics of in vitro kinase activity suggested two phases, an initial short slow phase followed by a rapid phase for wild type protein, whereas mutations in the autophosphorylation sites that cause defect (S428A) or conferred phosphomimetic property (S428E) displayed no distinct phases, suggesting that autophosphorylation may be controlling kinase activity through an autocatalytic mechanism. A reduction and delay in erythrophagocytosis was observed in E. histolytica cells overexpressing S428A and KDΔC proteins. These results indicate that enrichment of EhC2PK at the site of phagocytosis enhances the rate of trans-autophosphorylation, thereby increasing kinase activity and regulating the initiation of erythrophagocytosis in E. histolytica.  相似文献   

8.
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 can fix N(2) when combined nitrogen is not available in the growth medium. It has a family of 13 genes encoding proteins with both a Ser/Thr kinase domain and a His kinase domain. The function of these enzymes is unknown. Two of them are encoded by pkn41 (alr0709) and pkn42 (alr0710). These two genes are separated by only 72 bp on the chromosome, and our results indicate that they are cotranscribed. The expression of pkn41 and pkn42 is induced by iron deprivation irrespective of the nature of the nitrogen source. Mutants inactivating either pkn41, pkn42, or both grow similarly to the wild type under normal conditions, but their growth is impaired either in the presence of an iron chelator or under conditions of nitrogen fixation and iron limitation, two situations where the demand for iron is particularly strong. Consistent with these results, these mutants display lower iron content than the wild type and a higher level of expression for nifJ1 and nifJ2, which encode pyruvate:ferredoxin oxidoreductases. Both nifJ1 and nifJ2 are known to be induced by iron limitation. NtcA, a global regulatory factor for different metabolic pathways, binds to the putative promoter region of pkn41, and the induction of pkn41 in response to iron limitation no longer occurs in an ntcA mutant. Our results suggest that ntcA not only regulates the expression of genes involved in nitrogen and carbon metabolism but also coordinates iron acquisition and nitrogen metabolism by activating the expression of pkn41 and pkn42.  相似文献   

9.
以阿维链霉菌(Streptomyces avermitilis)76-12为出发菌株,采用亚硝基胍、吖啶橙、紫外线和氯化锂分别对其孢子和原生质体进行诱变,经抗代谢物理性筛选,获得一系列高产突变株,其中N-1-2高产突变株的发酵单位是出发菌株的2.47倍。实验中同时获得了只产阿维菌素a组分的突变株G-32、Bla组分含量高的Ave8菌株和产蓝绿色孢子的突变株UA-G等。  相似文献   

10.
6-Phosphofructokinase (PFK) is a key enzyme for glycolysis in both prokaryotes and eukaryotes. Previously, it was found that the activity of Myxococcus xanthus PFK increased 2.7-fold upon phosphorylation at Thr-226 by the Ser/Thr kinase Pkn4. The pkn4 gene is located 18 bp downstream of the pfk gene forming an operon, and both genes are expressed during vegetative growth and development. Here, we show that glycogen, which accumulates during stationary phase and early in development, is consumed during sporulation. A pfk-pkn4 deletion strain accumulated glycogen at a higher level than the wild-type strain, was unable to consume glycogen during developmental progression and exhibited a poor spore yield. From genetic complementation analysis of the pfk-pkn4 deletion strain with the pfk and pkn4 genes, it was found that glycogen consumption and a high spore yield require not only the pfk gene but also the pkn4 gene. Furthermore, phosphorylation is critical for glycogen consumption because the pfk gene engineered to express the mutant PFK (Thr-226-Ala) did not complement a pfk mutant. We propose that glycogen metabolism in M. xanthus is regulated in a similar manner to that in eukaryotes requiring a protein Ser/Thr kinase.  相似文献   

11.
Studies on the biosynthesis of avermectins   总被引:2,自引:0,他引:2  
To elucidate the pathway of avermectin biosynthesis, the biosynthetic relationships of avermectins A1a, A2a, B1a, B2a, and their respective monosaccharides and aglycones were studied. 14C-labeled avermectin compounds prepared from [1-14C]acetate were fed to Streptomyces avermitilis strain MA5502 and their metabolites were determined. Two furan ring-free aglycones, 6,8a-seco-6,8a-deoxy-5-keto avermectin B1a and B2a, have been isolated from the fermentation broth of a blocked mutant of S. avermitilis. Addition of the compounds and a semisynthetic compound, 5-keto avermectin B2a aglycone, to the fermentation medium of a second blocked mutant established that the two compounds are intermediates in the avermectin biosynthetic pathway immediately preceding avermectin aglycones.  相似文献   

12.
We report the first crystal structure of a plant (Pisum sativum L. cv Oregon sugarpod) mitochondrial nucleoside diphosphate kinase. Similar to other eukaryotic nucleoside diphosphate kinases, the plant enzyme is a hexamer; the six monomers in the asymmetric unit are arranged as trimers of dimers. Different functions of the kinase have been correlated with the oligomeric structure and the phosphorylation of Ser residues. We show that the occurrence of Ser autophosphorylation depends on enzymatic activity. The mutation of the strictly conserved Ser-119 to Ala reduced the Ser phosphorylation to about one-half of that observed in wild type with only a modest change of enzyme activity. We also show that mutating another strictly conserved Ser, Ser-69, to Ala reduces the enzyme activity to 6% and 14% of wild-type using dCDP and dTDP as acceptors, respectively. Changes in the oligomerization pattern of the S69A mutant were observed by cross-linking experiments. A reduction in trimer formation and a change in the dimer interaction could be detected with a concomitant increase of tetramers. We conclude that the S69 mutant is involved in the stabilization of the oligomeric state of this plant nucleoside diphosphate kinase.  相似文献   

13.
14.
The 90 kDa ribosomal S6 kinase-2 (RSK2) is a growth factor-stimulated protein kinase with two kinase domains. The C-terminal kinase of RSK2 is activated by ERK-type MAP kinases, leading to autophosphorylation of RSK2 at Ser386 in a hydrophobic motif. The N-terminal kinase is activated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) through phosphorylation of Ser227, and phosphorylates the substrates of RSK. Here, we identify Ser386 in the hydrophobic motif of RSK2 as a phosphorylation-dependent docking site and activator of PDK1. Treatment of cells with growth factor induced recruitment of PDK1 to the Ser386-phosphorylated hydrophobic motif and phosphorylation of RSK2 at Ser227. A RSK2-S386K mutant showed no interaction with PDK1 or phosphorylation at Ser227. Interaction with Ser386-phosphorylated RSK2 induced autophosphorylation of PDK1. Addition of a synthetic phosphoSer386 peptide (RSK2(373-396)) increased PDK1 activity 6-fold in vitro. Finally, mutants of RSK2 and MSK1, a RSK-related kinase, with increased affinity for PDK1, were constitutively active in vivo and phosphorylated histone H3. Our results suggest a novel regulatory mechanism based on phosphoserine-mediated recruitment of PDK1 to RSK2, leading to coordinated phosphorylation and activation of PDK1 and RSK2.  相似文献   

15.
Because of the loss of productivity in industrial strains (as a consequence of genetic instability), the selection of spontaneous and induced mutants in Streptomyces might generate enhanced producers of bioactive compounds. In this work, a spontaneously high producing mutant of Streptomyces avermitilis, strain 267/2H, was isolated. This mutant produced 8.2 times more avermectin B1 than the wild type and it was treated with methyl methanesulphonate (MMS) in order to obtain better avermectin producers. One mutant, strain IPT-85, produced about 16 times more avermectin than the wild-type strain ATCC 31267 and twice as much as the parental strain 267/2H. Reversion studies showed that avermectin production by the IPT-85 mutant was unstable and required constant selection to maintain high levels of avermectin B1 production. Upon a second MMS treatment of IPT-85, a new avermectin-aglycone-producing mutant, strain IPT 85-62, was isolated. Received: 2 March 1999 / Received revision: 16 June 1999 / Accepted: 27 June 1999  相似文献   

16.
Stafford MJ  Morrice NA  Peggie MW  Cohen P 《FEBS letters》2006,580(16):4010-4014
The protein kinase COT/Tpl2 is activated by interleukin-1 (IL-1), TNFalpha and lipopolysaccharide, and its activation by these agonists involves the IkappaB kinase beta (IKKbeta) catalysed phosphorylation of the p105 regulatory subunit. Here, we show that COT activation also requires catalytic subunit phosphorylation, since IL-1beta induced a 5-10-fold activation of a COT mutant unable to bind p105. Activation was paralleled by the phosphorylation of Thr290 and Ser62 and unaffected by the IKKbeta inhibitor PS1145 at concentrations which prevented the degradation of IkappaBalpha. Mutagenesis experiments indicated that COT activation is initiated by Thr290 phosphorylation catalysed by an IL-1-stimulated protein kinase distinct from IKKbeta, while Ser62 phosphorylation is an autophosphorylation event required for maximal activation.  相似文献   

17.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

18.
Activation of the serine/threonine kinase, protein kinase D (PKD/PKC mu) via a phorbol ester/PKC-dependent pathway involves phosphorylation events. The present study identifies five in vivo phosphorylation sites by mass spectrometry, and the role of four of them was investigated by site-directed mutagenesis. Four sites are autophosphorylation sites, the first of which (Ser(916)) is located in the C terminus; its phosphorylation modifies the conformation of the kinase and influences duration of kinase activation but is not required for phorbol ester-mediated activation of PKD. The second autophosphorylation site (Ser(203)) lies in that region of the regulatory domain, which in PKC mu interacts with 14-3-3tau. The last two autophosphorylation sites (Ser(744) and Ser(748)) are located in the activation loop but are only phosphorylated in the isolated PKD-catalytic domain and not in the full-length PKD; they may affect enzyme catalysis but are not involved in the activation of wild-type PKD by phorbol ester. We also present evidence for proteolytic activation of PKD. The fifth site (Ser(255)) is transphosphorylated downstream of a PKC-dependent pathway after in vivo stimulation with phorbol ester. In vivo phorbol ester stimulation of an S255E mutant no longer requires PKC-mediated events. In conclusion, our results show that PKD is a multisite phosphorylated enzyme and suggest that its phosphorylation may be an intricate process that regulates its biological functions in very distinct ways.  相似文献   

19.
Phospholamban (PLB) can be phosphorylated at Ser(16) by cyclic AMP-dependent protein kinase and at Thr(17) by Ca(2+)-calmodulin-dependent protein kinase during beta-agonist stimulation. A previous study indicated that mutation of S16A in PLB resulted in lack of Thr(17) phosphorylation and attenuation of the beta-agonist stimulatory effects in perfused mouse hearts. To further delineate the functional interplay between dual-site PLB phosphorylation, we generated transgenic mice expressing the T17A mutant PLB in the cardiac compartment of the null background. Lines expressing similar levels of T17A mutant, S16A mutant, or wild-type PLB in the null background were characterized in parallel. Cardiac myocyte basal mechanics and Ca(2+) kinetics were similar among the three groups. Isoproterenol stimulation was associated with phosphorylation of both Ser(16) and Thr(17) in wild-type PLB and Ser(16) phosphorylation in T17A mutant PLB, whereas there was no detectable phosphorylation of S16A mutant PLB. Phosphorylation of Ser(16) alone in T17A mutant PLB resulted in responses of the mechanical and Ca(2+) kinetic parameters to isoproterenol similar to those in wild-type myocytes, which exhibited dual-site PLB phosphorylation. However, those parameters were significantly attenuated in the S16A mutant myocytes. Thus, Ser(16) in PLB can be phosphorylated independently of Thr(17) in vivo, and phosphorylation of Ser(16) is sufficient for mediating the maximal cardiac responses to beta-adrenergic stimulation.  相似文献   

20.
Degradation of the HIV receptor CD4 by the proteasome, mediated by the HIV-1 protein Vpu, is crucial for the release of fully infectious virions. To promote CD4 degradation Vpu has to be phosphorylated on a motif DSGXXS, which is conserved in several signalling proteins known to be degraded by the proteasome upon phosphorylation. Such phosphorylation is required for the interaction of Vpu with the ubiquitin ligase SCF-beta-TrCP that triggers CD4 degradation by the proteasome. In the present work, we used two peptides of 22 amino acids between residues 41 and 62 of Vpu. Vpu41-62 was predicted to form an alpha-helix-flexible-alpha-helix including the phosphorylation motif DS52GNES56 and Vpu_P41-62 was phosphorylated at the two sites Ser52 and Ser56. We analysed the conformational change induced by the phosphorylation of this peptide on the residues Ser52 and Ser56. Homo- and heteronuclear NMR techniques were used to assess the structural influence of phosphorylation. The spectra of the free peptides, Vpu_P41-62 and Vpu41-62, in both H2O (at pH 3.5 and 7.2) and a 1:1 mixture of H2O and trifluoroethanol were completely assigned by a combined application of several two-dimensional proton NMR methods. Analysis of the short- and medium-range NOE connectivities and of the secondary chemical shifts indicated that the peptide segment (42-49) shows a less well-defined helix propensity. The Vpu_P41-62 domain of residues 50-62 forms a loop with the phosphate group pointing away, a short beta-strand and a flexible extended 'tail' of residues 60-62. Residues 50-60 exhibit alpha-proton NMR secondary chemical shift changes from random coil toward more beta-like structure with the combined (temperature, solvent and pH) NMR and molecular calculation experiments. Differences in this molecular region 50-62 suggest that conformational changes of Vpu_P play an important role in Vpu_P-induced degradation of CD4 molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号