首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We studied how grazing intensity by small and mid‐sized ungulate grazers varied with nutritional quality and grass species composition in wet oligotrophic tallgrass savanna of coastal northern Tanzania. Average grazing intensity was low (3–15% by cover), and most grass species were scarcely used by herbivores. Only two grasses, Panicum infestum and Digitaria milanjiana, had nitrogen and phosphorus concentrations that were consistently above the minimum levels (e.g. nitrogen concentrations <7 mg g?1) required by the three commonest grazers, Bohor reedbuck, waterbuck and wildebeest. The best predictors of grazing intensity were cover of P. infestum (the most abundant grass, with a mean cover of 15%) and canopy height of ungrazed vegetation. Models did not contain separate predictors for nutritional quality, presumably because quality varied mainly at the grass species level and therefore was fully represented by the variable ‘cover of P. infestum’. Given that the three grazers differed greatly in body size and muzzle width (parameters known to influence nutrient requirements and the ability of grazers to feed selectively at the smallest spatial scale), we expected there to be strong resource partitioning that would be detectable in terms of grazing strategies and feeding sites. However, apart from minor differences in canopy height, greenness and diameter of grazed patches (albeit consistent with our expectations), feeding stations of the three grazers were similar and strongly dominated by P. infestum. We conclude that the low quality of herbage in wet oligotrophic savannas restricts foraging choices, which produces a characteristic yet impoverished grazing community that exhibits only limited resource partitioning.  相似文献   

3.
1. Algal growth in lotic systems is controlled either from the bottom‐up (e.g. nutrients and light, which determine growth rates) or from the top‐down (e.g. grazing pressure, which reduces accumulated biomass). Nutrient‐enriched streams that support large and diverse grazing macroinvertebrate populations and those with shaded riparian corridors rarely suffer from excessive algal growth. 2. In this study, the density of benthic algivorous macroinvertebrates was experimentally manipulated in shaded and open nutrient‐enriched stream habitats of the Owennagearagh River, south‐west Ireland. The ability of macroinvertebrate grazers and riparian shade to control benthic algal growth [particularly the nuisance alga, Cladophora glomerata (L. Kütz)] was investigated. Three sites with markedly different concentrations of plant nutrients (one site upstream and two sites downstream of the sewage outfall) were selected. The density of grazing invertebrates colonising ceramic tiles was reduced using high‐voltage localised electric pulses. Replicates of treatment (grazer‐excluded) and control (grazed) tiles were deployed in open and shaded (<25 and >80% canopy cover, respectively) patches of stream bed, in each site. 3. After 2‐week Cladophora cover, periphytic chlorophyll a and biofilm ash‐free dry mass (AFDM) were quantified for all experimental tiles. Values for all three parameters were highest on grazer‐excluded tiles from open patches. Grazed tiles from open patches accrued little Cladophora and had significantly lower levels of chlorophyll a and AFDM. Nutrient inputs were found to have an impact on the density of grazing invertebrates, with higher densities of Baetis nymphs at the most nutrient‐enriched site. 4. Our results demonstrate that in eutrophic, high‐light streams, filamentous algae can quickly accumulate to nuisance levels in the absence of invertebrate grazers. In future, greater attention should be paid to the role of grazing invertebrates in controlling nuisance algae in streams, in addition to algal–nutrient relationships.  相似文献   

4.
It is critical for our knowledge of biodiversity and ecosystem processes to understand how individual species contribute to ecosystem processes and how these contributions vary in space and time. We used a manipulative field experiment in five locations over 17° of latitude [from southern Portugal to the Isle of Man (British Isles)] to determine the relative response of rocky intertidal algal assemblages released from control by the grazing of limpets. Response ratios showed that when limpets were removed there was a trend of effects from north to south. In the north, grazing had a strong effect on algal assemblages, but removing grazers reduced spatial variability in assemblages. In the south, the effect of limpet grazing was far weaker and removal of grazers had a much reduced impact on spatial variability. Here we show a clear trophic control of an ecosystem in that grazing by limpets not only determines macroalgal abundance overall but also modifies ecosystem stability via variability in cover of algae.  相似文献   

5.
6.
Bottom‐up control is a fundamental structuring force in food webs. Food webs of ocean‐exposed sandy beaches are predicted to be bottom‐up controlled systems, underpinned by imported organic matter rather than in situ primary production. This ecological model of resource‐based regulation of biological assemblages is juxtaposed against a prevailing paradigm built around a dominance of physical drivers in sandy beach ecosystems. Surprisingly, given the apparently ubiquitous energetic subsidies of beach food webs, the central premise of bottom‐up control has not been tested. Here we experimentally manipulated in situ nutrient levels on a sandy beach to test food web responses at the levels of primary producers (benthic microalgae) and their grazers (meiofauna). The meiofauna community as a whole appeared most strongly influenced by the local physical environment, particularly changes in sediment grain size – this supports the traditional ‘environmental control paradigm’. We also detected a significant, positive response of two consumer groups of the meiofauna (nematodes, ostracods) to nutrient enrichment that supports a model of biological, bottom‐up control. Although the predicted response of elevated producer biomass following nutrient enrichment was not detected, intense grazing pressure on new, stimulated production may have masked positive responses by the primary producers. Multichannel regulation of food webs is likely for many exposed sandy beaches, albeit an often lower importance of in situ bottom‐up forces compared with stronger environmental control.  相似文献   

7.
8.
9.
In ecology, there is an increasing amount of research dedicated to understanding how intraspecific genetic diversity can extend beyond the population level to influence the assembly of communities and the functioning of ecosystems. In this issue of Molecular Ecology, Koh et al. (2012) take this exploration to a new level using bacterial biofilms and protozoan grazers. They show that there is heritable variation in the phenotypes of different variants of biofilms of Serratia marcescens and that these strains display complementarity when combined in a diverse assemblage. Mixtures of variants were significantly more resistant to protozoan grazing than either wild‐type or variant biofilms grown in monocultures. While similar biodiversity effects of genotype mixtures have been observed in other systems, Koh et al. (2012) link phenotype variation of the biofilms to a single nucleotide polymorphism in one regulatory gene. Importantly, the authors demonstrate that minimal changes in a genotype can result in substantial shifts in interspecific ecological interactions.  相似文献   

10.
The importance of species diversity to emergent, ecological properties of communities is increasingly appreciated, but the importance of within‐species genetic diversity for analogous emergent properties of populations is only just becoming apparent. Here, the properties and effects of genetic variation on predation resistance in populations were assessed and the molecular mechanism underlying these emergent effects was investigated. Using biofilms of the ubiquitous bacterium Serratia marcescens, we tested the importance of genetic diversity in defending biofilms against protozoan grazing, a main source of mortality for bacteria in all natural ecosystems. S. marcescens biofilms established from wild‐type cells produce heritable, stable variants, which when experimentally combined, persist as a diverse assemblage and are significantly more resistant to grazing than either wild type or variant biofilms grown in monoculture. This diversity effect is biofilm‐specific, a result of either facilitation or resource partitioning among variants, with equivalent experiments using planktonic cultures and grazers resulting in dominance by a single resistant strain. The variants studied are all the result of single nucleotide polymorphisms in one regulatory gene suggesting that the benefits of genetic diversity in clonal biofilms can occur through remarkably minimal genetic change. The findings presented here provide a new insight on the integration of genetics and population ecology, in which diversity arising through minimal changes in genotype can have major ecological implications for natural populations.  相似文献   

11.
The accumulation of microbial biofilms on ships’ hulls negatively affects ship performance and efficiency while also playing a role in the establishment of even more detrimental hard-fouling communities. However, there is little quantitative information on how the accumulation rate of microbial biofilms is impacted by the balance of the rates of cell settlement, in situ production (ie growth), dispersal to surrounding waters and mortality induced by grazers. These rates were quantified on test panels coated with copper-based antifouling (AF) or polymer-based fouling-release (FR) coatings by using phospholipids as molecular proxies for microbial biomass. The results confirmed the accepted modes of efficacy of these two types of coatings. In a more extensive set of experiments with only the FR coatings, it was found that seasonally averaged cellular production rates were 1.5 ± 0.5 times greater than settlement and the dispersal rates were 2.7 ± 0.8 greater than grazing. The results of this study quantitatively describe the dynamic balance of processes leading to the accumulation of microbial biofilm on coatings designed for ships’ hulls.  相似文献   

12.
1. Thermally assisted hydrolysis and methylation of cellular lipids, by means of Curie‐point pyrolysis of intact whole cells in the presence of a quaternary ammonium hydroxide reagent, provided analytical access (pyrolysis‐gas chromatography; Py‐GC) to the very small amounts of algal carbon delivered by fluorescence‐activated cell sorting. Based on differences in pigment composition, population‐specific in situ fatty acid profiles could be obtained of the major taxa present in the phytoplankton of Lake Loosdrecht (The Netherlands). 2. By combining Py‐GC and compound‐specific isotope‐ratio mass spectrometry (Py‐GC‐IRMS) the in situ carbon isotopic signatures could be established of the fatty acid profiles retrieved by flow cytometry. Colonial phytoplankton not amenable to cell sorting and zooplankton specimens were also isotopically characterised with this technique by subjecting handpicked samples to pyrolytic methylation. In this way proxies could be obtained in great detail for isotopic end‐members delineating important carbon sources and sinks in the pelagic food web of Lake Loosdrecht. 3. These analyses suggested a significant isotopic heterogeneity among major representatives of the phytoplankton in Lake Loosdrecht. This heterogeneity was also reflected in the isotopic composition of the zooplankton, implying the occurrence of preferential grazing. A differential labelling of the phytoplankton using 13C‐CO2 in a laboratory confinement, and subsequent monitoring of label transfer to the zooplankton, corroborated selective feeding in some rotifer species. The large‐bodied rotifer Asplanchna, previously thought to be predaceous, apparently mainly fed on algae rather than small rotifers, whereas Euchlanis dilatata actively selected filamentous cyanobacteria. Flow cytometric cell sorting in concert with Py‐GC‐IRMS offers new possibilities in carbon isotope‐based food web studies.  相似文献   

13.
Evolutionary morphological and physiological differences between browsers and grazers contribute to species‐specific digestion efficiency of food resources. Rumen microbial community structure of browsers is supposedly adapted to characteristic nutrient composition of the diet source. If this assumption is correct, domesticated ruminants, or grazers, are poor model animals for assessing the nutritional value of food consumed by browsing game species. In this study, typical spring and summer foods of the European moose (Alces alces) were combined with rumen fluid collected from both dairy cows (Bos taurus) and from moose, with the aim of comparing fermentation efficiency and microbial community composition. The nutritional value of the food resources was characterized by chemical analysis and advanced in vitro measurements. The study also addressed whether or not feed evaluation based on in vitro techniques with cattle rumen fluid as inoculum could be a practical alternative when evaluating the nutritional value of plants consumed by wild browsers. Our results suggest that the fermentation characteristics of moose spring and summer food are partly host‐specific and related to the contribution of the bacterial phyla Firmicutes and Bacteriodetes to the rumen microbial community. Host‐specific adaptations of the ruminal microbial community structure could be explained from the evolutionary adaptations related to feeding habitats and morphophysiological differences between browsers and grazers. However, the observed overall differences in microbial community structure could not be related to ruminal digestion parameters measured in vitro. The in vitro evaluation of digestion efficiency reveals that equal amounts of methane were produced across all feed samples regardless of whether the ruminal fluid was from moose or dairy cow. The results of this study suggested that the nutritional value of browsers' spring and summer food can be predicted using rumen fluid from domesticated grazers as inoculum in in vitro assessments of extent of digestion when excluding samples of the white water lily root, but not of fermentation characteristics as indicated by the proportions of individual fermentation fatty acids to the total of volatile fatty acids.  相似文献   

14.
We investigated how the relative availability of solar radiation in the presence or absence of grazing alters the ability of benthic algae to respond to nutrient enrichment in an Alaskan marsh. We used a factorial mesocosm experiment that included nutrient enrichment (enriched or control), grazing (grazed or ungrazed), and light (unshaded or shaded) to simulate shading by macrophytes early and late in the growing season, respectively. We found stronger effects of grazers and nutrients compared to light on benthic algal biomass and taxonomic composition. Algal biomass increased in nutrient‐enriched treatments and was reduced by grazing. Shading did not have an effect on algal biomass or taxonomic composition, but the concentration of chl a per algal biovolume increased with shading, demonstrating the ability of algae to compensate for changes in light availability. Algal taxonomic composition was more affected by grazer presence than nutrients or light. Grazer‐resistant taxa (basal filaments of Stigeoclonium) were replaced by diatoms (Nitzschia) and filamentous green algae (Ulothrix) when herbivores were removed. The interacting and opposing influences of nutrients and grazing indicate that the algal community is under dual control from the bottom‐up (nutrient limitation) and from the top‐down (consumption by herbivores), although grazers had a stronger influence on algal biomass and taxonomic composition than nutrient enrichment. Our results suggest that low light availability will not inhibit the algal response to elevated nutrient concentrations expected with ongoing climate change, but grazers rapidly consume algae following enrichment, masking the effects of elevated nutrients on algal production.  相似文献   

15.
Acidity is a major driving variable in the ecology of fresh waters, and we sought to quantify macroecological patterns in stream food webs across a wide pH gradient. We postulated that a few generalist herbivore-detritivores would dominate the invertebrate assemblage at low pH, with more specialists grazers at high pH. We also expected a switch towards algae in the diet of all primary consumers as the pH increased. For 20 stream food webs across the British Isles, spanning pH 5.0–8.4 (the acid sites being at least partially culturally acidified), we characterised basal resources and primary consumers, using both gut contents analysis and stable isotopes to study resource use by the latter. We found considerable species turnover across the pH gradient, with generalist herbivore-detritivores dominating the primary consumer assemblage at low pH and maintaining grazing. These were joined or replaced at higher pH by a suite of specialist grazers, while many taxa that persisted across the pH gradient broadened the range of algae consumed as acidity declined and increased their ingestion of biofilm, whose nutritional quality was higher than that of coarse detritus. There was thus an increased overall reliance on algae at higher pH, both by generalist herbivore-detritivores and due to the presence of specialist grazers, although detritus was important even in non-acidic streams. Both the ability of acid-tolerant, herbivore-detritivores to exploit both autochthonous and allochthonous food and the low nutritional value of basal resources might render chemically recovering systems resistant to invasion by the specialist grazers and help explain the sluggish ecological recovery of fresh waters whose water chemistry has ameliorated.  相似文献   

16.
We hypothesize that algae with different cell compositions are differently perceived by their predators and consequently subjected to selective grazing. Five populations of the diatom Phaeodactylum tricornutum that differed in organic and elemental composition, but were otherwise identical, were generated by acclimation to distinct growth regimes. The different populations were then mixed in pairs and subjected to predation by either the rotifer Brachionus plicatilis or the copepod Acartia tonsa. The presence of rotifers had no impact on the ratio between any two algal populations. The presence of copepods, however, affected the ratio between algae previously acclimated to a medium containing 1 mM NH4+ and algae acclimated to 0.5 mM NO3?, and to either a lower irradiance or a higher CO2 concentration. We discuss the possible reason for the influence of different nutritional histories on the vulnerability of algae to predators. The differential impact of grazers on the growth of algae with different nutritional histories may result from direct selective grazing (i.e., grazers can detect algae with the most palatable cell composition), alone or combined to an asymmetric utilization of the nutrients regenerated after predation by co‐existing algal populations. Our results strongly suggest that the nutritional history of algae can influence the relationships between phytoplankton and grazers and hint at the possibility that algal cell composition is potentially subject to natural selection, because it influences the probability that algae survive predation.  相似文献   

17.
Evidence is given that odour compounds of diatoms serve as potential repellents for crustacean grazers. Novel repellent-test and odour-test apparatus allowed the determination of repellent activity of diatom derived compounds, activated by freezing and thawing or mechanical disintegration, and pure compounds, respectively. Epilithic diatom biofilms when activated, produced odour compounds that were determined by GC–MS to be polyunsaturated aldehydes (PUA). 2(E),4(Z),7(Z)-Decatrienal and 2(E),4(Z)-octadienal were the major compounds, and 2(E),4(Z)-heptadienal was a minor compound. These PUA were each accompanied by small amounts of the E,E-isomers in positions 2 and 4. 2(E),4(E),7(Z)-Decatrienal was the most active repellent tested and exhibited a RC50 value (indicating the concentration of a compound necessary for a 50% reduction of swimming crustaceans in the assay vial) of 3.5 μM in a defined water column. Quantitative analyses showed that upon activation diatom biofilms produced large amounts of eicosapentaenoic acid (EPA) of which only a minor part was degraded to PUA. The major part of EPA was retained in the cells whilst the major part of PUA was released into the surrounding water. The data are consistent with the hypothesis that diatoms damaged by grazers develop free EPA in the cells that is toxic to grazers, and release PUA into the water that serve as warning signals to grazers. Diatoms and other phytoplankton species, that have the capacity to form these compounds, might benefit from such a reaction because the producers live in colonies or assemblages and the death of one cell liberates a cloud of repellent compounds into the water which reduces the grazing pressure on the remaining cells. Such activated defence reactions may help explain food selection and avoidance in freshwater and marine ecosystems.  相似文献   

18.
1. Sedentary grazers can be numerous in fresh waters, despite the constraints on resource availability and the increased predation risk inherent in this lifestyle. The retreats of sedentary grazers have been assumed to provide protection to the resident (a ‘house’), but also may provide additional fertilised food for the grazer (i.e. a ‘garden’). If retreats function as a garden, then they should (i) contain a higher quality and/or quantity of food than the alternative food source. Furthermore, the proportion of retreat‐derived carbon and nitrogen assimilated by the resident should be (ii) related to overall resource availability (more when resources are limited) or (iii) perhaps also to larval density. Alternatively, if retreats provide a less risky food source, then (iv) assimilation of material from the retreat is likely to be greater under conditions in which the risk of emerging from the retreat is high. 2. We tested these four hypotheses for the common and widespread gallery‐building grazing caddisfly Tinodes waeneri. Resource availability, larval density and biomass, and exposure were measured for populations from six lakes of differing productivity in August, October and January. 3. Galleries always contained more algal food than the surrounding epilithon, suggesting that gardening is effective. Furthermore, gallery chlorophyll a content in August, and the disparity in food quality (assessed from the C : N ratio) between gallery and epilithon (quality higher in the former) in October were positively related to the proportion of larval biomass that was derived from the gallery. Larval density and wave exposure parameters were not related to larval assimilation of gallery material. 4. Galleries that are fertilised by the occupant provide more, and sometimes also better quality, food (in terms of the C : N ratio) than is otherwise available. Thus, the gallery plays a substantial role in larval nutrition, and this role is greater at key times of food shortage.  相似文献   

19.
The benthic dinoflagellate Gambierdiscus toxicus produces polyether toxins that cause ciguatera fish poisoning in humans. The toxins initially enter food webs when fish forage on macroalgae, or other substrates, hosting this epiphytic dinoflagellate. Population studies of G. toxicus and risk assessments in ciguatera-prone regions often rely on quantifying dinoflagellates on macroalgae. Underlying these studies is the assumption that the algae sampled represent a readily consumable resource equally available for benthic grazers. However, many algal hosts of G. toxicus possess a variety of defenses against grazing, and host–dinoflagellate associations may act as toxin sources or sinks depending on their palatability. Marine macroalgae may tolerate or avoid herbivory by exhibiting fast growth, by having poor nutritional quality, by utilizing spatial or temporal escapes or by using chemical or structural defenses. Thus, rapidly consumed algae that cope with herbivores by growing fast, such as many filamentous turfs, could be responsible for a high toxin flux even at low dinoflagellate densities. In contrast, ubiquitous unpalatable algae with much higher dinoflagellate densities might contribute little to toxin flux, and effectively act as refuges for G. toxicus. To date, G. toxicus has been reported from 56 algal genera, two cyanobacteria, one diatom, and one seagrass; 63% of these contain species that are defended from fish grazing and other grazers via chemical, morphological or structural defenses, by low nutritional quality, or by a combination of defensive strategies. High dinoflagellate densities on unpalatable macroalgae could indicate passive accumulation of cells on undisturbed hosts, rather than population explosions or active toxin sources for food webs. Understanding the flow of ciguatoxins in nature requires consideration of the ecology of both G. toxicus and its algal hosts. The complexity of marine algal–herbivore interactions also has consequences for other benthic dinoflagellates that produce toxins, which accumulate in consumers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号