首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. To evaluate the respective contributions of habitat, fire regime and colonization-extinction processes to the distribution of northern Pinus species, we investigated the distribution of P. banksiana (jack pine), P. resinosa (red pine) and P. strobus (white pine) on 117 islands of Lake Duparquet in northwestern Québec. Stepwise logistic regressions indicated that the extent of xeric areas on the islands was the sole factor predicting jack pine distribution. The distribution of white pine was predicted primarily by the combined effects of distance to the shoreline and elevation, with a smaller effect of area of xeric habitat. The distribution of red pine was predicted by other populations of red pine nearby, with a slightly smaller effect of the combined effects of distance to shoreline and elevation. None of the species completely saturates all available islands nor is any restricted to specific, very exposed aspects. The results suggest that pine is more frequent on islands with characteristics that promote lightning strikes and thus higher fire occurrence. However, absence of pine in several islands may not be explained by abiotic characteristics or recent fire history. The presence of very small populations, together with low invasion potential, suggests that the observed distribution is mainly driven by the process of random extinction. A disequilibrium between present and past fire regimes may explain why northern pines have discontinuous distributions inside their range limits.  相似文献   

2.
Abstract. The objective of this study is to determine the factors responsible for the distribution of Pinus resinosa (red pine) at its northern limit in northwestern Québec. Pinus resinosa is found only on islands and protected lake shores at its northern distribution boundary. The influence of climate on the germination of P. resinosa seed and on the phenology of P. resinosa was investigated in the Lake Duparquet region of northwestern Québec. The results indicate that P. resinosa seed readily germinates at island- and inland sites, which indicates that germination is not responsible for the distribution of P. resinosa in the Lake Duparquet region. Also, cones and seeds developed normally at island sites and an inland plantation, which suggests that seed production is not hindering the expansion of P. resinosa. These results, together with other studies in the literature, suggest that no climatic factor could explain the present distribution of P. resinosa nor its northern limit. The fire regime appears to be responsible for the restriction of P. resinosa to lake environments and hinders the northward expansion of P. resinosa. The typical crown fire regime of the boreal forest is not conducive for P. resinosa regeneration and restricts the species to fire-sheltered locations such as islands and protected lake shores.  相似文献   

3.
Kirtland's Warblers (Setophaga kirtlandii) are an endangered species with specialized habitat requirements, and the only documented nesting location in Canada is an Army installation. From 2007 to 2010, I compared habitat characteristics of sites occupied and not occupied by Kirtland's Warblers at Garrison Petawawa located ~200 km northwest of Ottawa, Ontario. Sites occupied by Kirtland's Warblers (N = 11) had greater percent cover of low sweet blueberry (Vaccinium angustifolium; 31.2%), coral lichen (Cladina stellaris; 0.4%), reindeer lichen (Cladonia rangiferina; 8.3%), and wavy‐leaved moss (Dicranum polysetum; 4.3%) than unoccupied sites (N = 6). I found no difference in tree species composition between sites, with jack pine (Pinus banksiana), white pine (Pinus strobus), red pine (Pinus resinosa), poplar (Populus tremuloides), and red maple (Acer rubra) present in both used and unused sites. Forest stands occupied by Kirtland's Warblers were significantly younger (< 20 yr old) than unoccupied sites, and most occupied sites were within former fire zones and sites where jack pines had been planted. Thus, breeding habitat of Kirtland's Warblers in Canada consisted of young pine trees, with more red pine than in their breeding habitat in Michigan, and ground cover including blueberry, lichens, and mosses. These results suggest that Kirtland's Warblers may be less selective in their habitat requirements than previously thought, and should provide guidance for recovery groups and regulatory agencies in accurately delineating suitable habitat for these warblers in Canada.  相似文献   

4.

Premise

Understanding mechanisms fostering long-term persistence of marginal populations should provide key insights about species resilience facing climate change. Cone serotiny is a key adaptive trait in Pinus banksiana (jack pine), which shows phenotypic variation according to the fire regime. Compared to range-core populations within the fire-prone boreal forest, low and variable serotiny in rear-edge populations suggest local adaptation to uncommon and unpredictable wildfire regime. We assessed environmental/physiological factors that might modulate intraspecific variation in cone serotiny.

Methods

We experimentally subjected closed cones to incrementing temperatures, then tested seed germination to determine whether and how various ecological factors (cone age, branch height, tree size, tree age) are related to cone dehiscence and seed viability in jack pines from rear-edge and range-core populations in eastern Canada.

Results

Cones from rear-edge populations dehisce at a lower opening temperature, which increases with cone age. Cones from range-core stands open at a more constant, yet higher temperature. Cones from rear-edge stands take between 13 and 27 years to reach the level of serotiny achieved at the range core. At the rear edge, seed viability is steady (51%), whereas it decreases from 70% to 30% in 20 years at the range core.

Conclusions

We inferred the mechanisms of a bet-hedging strategy in rear-edge populations, which ensures steady recruitment during fire-free intervals and successful postfire regeneration. This capacity to cope with infrequent and unpredictable fire regime should increase the resilience of jack pine populations as global changes alter fire dynamics of the boreal forest.  相似文献   

5.
Interannual variations in cone and seed production of Pinus banksiana Lamb, were studied at the species northern limit of distribution in Québec (Canada). Cone number per cone-bearing branch, potential number of seeds per cone, number of formed, filled, and viable seeds per cone, and seed viability, germination rate, and mass were determined for two populations of the species, over a 9-year series. There were significant differences among years, but not between populations, in all the variables considered. The populations were well synchronized with each other, suggesting that climatic influence on the variables considered might be significant. Apparent periodicity in reproductive output also suggests the existence of some internal cycle, possibly in relation to tree reserves. Annual viable seed production is the result of a combination of events in the reproductive cycle of an individual (i.e., cone initiation, pollination, fertilization, and embryo maturation), each one specifically affected by climate. There are no apparent trade-offs between seed mass and number of filled seeds per cone over time; moreover, there seems to be a positive relationship between seed mass and number of viable seeds per cone. Climate conditions during fertilization and embryo maturation (both of which occur during the same season) appear to significantly influence the species reproductive output. We present regression models based on meteorological variables to estimate cone and viable seed production, and seed mass.  相似文献   

6.
Abstract. From 1980–1989, fires burned 32 440 km2 of boreal forest, 200 km south of the forest-tundra border in northern Québec, Canada. An assessment of the impact of fire on tree population densities was carried out by comparing the number of Pinus banksiana and Picea mariana in 83 sites before and after the sites burned in 1981, 1983, 1988 or 1989. Age structure analysis of post-fire populations burned in 1972, 1976 and 1983, along with the rapid exhaustion of the seed bank from burned trees, suggest that the majority of seedlings were established within 3 to 10 yr after fire. Consequently, given the absence of nearby living seed bearers, little (if any) further recruitment can be expected in the even-aged, regenerating populations. According to the tree density comparison (pre-fire vs post-fire), a shift from Picea- to Pinus-dominated communities occurred in most of the sites burned in 1981 or 1983, and in some of the sites burned in 1988 or 1989. The 1988 fire reduced the tree population density by 95% in 10 of the 15 sites; total tree density decreased by at least 75% in 28 out of 40 sites burned in 1989. This suggests that the areas burned in 1988 and 1989 will mainly regenerate as very open forests or lichen-heath communities that are more commonly found in the forest-tundra zone, north of the study area. Fire intensity, short fire interval, and unfavorable climate during and after fires are three plausible mechanisms associated with these post-fire vegetation changes.  相似文献   

7.
We used tree-ring reconstruction data to study changes in the spatial pattern of live and dead trees at an annual resolution over a 50-year period at four unmanaged, even-aged fire origin jack pine (Pinus banksiana Lamb.) stands in Saskatchewan and Manitoba, Canada. Previous studies of the spatial pattern in P. banksiana have either looked at only a snapshot from a survey done at a single point in time, or repeated measurements of permanent plots taken at 10-year intervals. With annual data, we could examine detailed changes in spatial patterns and relate these to events during stand development and external disturbances. Trees were initially clustered at all sites, but at different distances at each site, most likely because of variability in seedbed distribution at stand initiation. Clustering disappeared over time at all sites, and at a similar mean tree spacing at each site. However, significant regularity only appeared sporadically at one site, indicating that competition with neighbours was not the only factor influencing changes in spatial pattern. At two of the four sites, clustering disappeared suddenly at the same time that mortality rate reached a peak, in one case also coinciding with a jack pine budworm (Choristoneura pinus pinus Freeman) defoliation event. Dead trees were also initially more clustered than the distribution of all trees, but at different distances than the clustering of live trees. This also disappeared over time so that dead trees were eventually a random sample from the distribution of all trees. After the peak of mortality had passed, factors other than competition were determining the dynamics of these forests.  相似文献   

8.
Abstract. To assess the effects of site type, forest initiation periods and fire regimes on the dynamics of Pinus banksiana (Jack pine), the age structure of 69 populations of the species was analyzed. Two landscapes with different fire regimes were selected in the southern part of the Canadian boreal forest in Québec: the ‘mainland landscape’ is characterized by a fire regime of large lethal fires, the ‘island landscape’ is affected by a complex fire regime including lethal and non-lethal fires. Age structure was compared between forest initiation periods and site types (mesic mainland, xeric mainland and xeric island) using the Shannon regularity index. An even-aged population structure was found within the first 100 yr following a lethal fire, while after that period the population structure becomes more uneven-aged. Under mesic conditions, populations tend to have an even-aged structure, under xeric conditions an uneven-aged structure. Natural openings present in xeric sites allow for recruitment in the absence of fire. This permits the self-maintenance of Pinus banksiana. Xeric island populations show more uneven-aged structures than xeric mainland populations. The occurrence of non-lethal fires on the islands creates uneven-aged structures. Further, the results suggest that the selection pressure of the island fire regime, favouring non-serotinous and mixed P. banksiana individuals, is one of the factors responsible for a higher recruitment in the absence of fire on islands than on the mainland.  相似文献   

9.
The pinewood nematode, Bursaphelenchus xylophilus, was inoculated into established native jack and red pines (Pinus banksiana and P. resinosa) and exotic Austrian pine (P. nigra) in Minnesota and Wisconsin forests during summer 1981. The nematode isolates did not kill established nonstressed pine trees growing in the forest. However, the same nematode isolates killed pine seedlings under greenhouse conditions. Girdling the main stem of some trees to induce stress resulted in the death of the majority of inoculated and noninoculated branches of Austrian and jack pines, but no branch death was observed on red pine. Greater numbers of nematodes were extracted from branches of inoculated, girdled trees than from nongirdled trees. The mean number of nematodes extracted from branches of inoculated, nongirdled trees was 0.3 - 14 nematodes per gram of wood.  相似文献   

10.
To examine the mechanisms of earlier reported alleviation of fluoride injury in ectomycorrhizal plants by NaCl, jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings were subjected to 1 mM and 5 mM KF in the presence of either 60 mM NaCl or 10% polyethylene glycol 3350 (PEG) for 2 weeks. Before the treatments, seedlings had either been inoculated with the ectomycorrhizal fungus Suillus tomentosus or remained non-inoculated. The inoculation with S. tomentosus reduced Na uptake by shoots and roots of jack pine seedling and by roots of white spruce that were treated with 60 mM NaCl. Mycorrhizal associations also drastically decreased fluoride uptake by jack pine seedlings, but did not affect shoot fluoride concentrations in white spruce. When NaCl was replaced by PEG in the 5 mM KF treatment solution, shoot fluoride concentrations were reduced by more than twofold without corresponding reductions in transpiration rates in mycorrhizal and non-mycorrhizal white spruce seedlings. When fluoride was present in the treatment solution, Na concentrations were lower in shoots and roots of both jack pine and white spruce mycorrhizal and non-mycorrhizal seedlings. The results suggest that Suillus tomentosus may help alleviate the effects of soil fluoride and salinity in jack pine and that fluoride uptake in white spruce is sensitive to osmotic stress.  相似文献   

11.
It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.  相似文献   

12.
Aim The purpose of this study is to develop palaeovegetation zonation models for central and north‐central North America, based on late‐Quaternary and Holocene pollen stratigraphic data (n = 246 sites). A secondary purpose was to evaluate an hypothesis ( Strong & Hills, 2003 ) to explain the disjunct distribution of species in western Alberta. Location Hudson Bay‐Lake Michigan to the Rocky Mountains region, north of 36° N to the Arctic Ocean (c. 70° N). Methods Pollen profiles spanning 40 years of palaeoecological research in North America were extracted from published and unpublished archival sources. Individual profiles were subdivided into 1000‐year increments based on the assumption of a constant sedimentation rate between stratigraphic dates (e.g. surface sediments, radiocarbon 14C dates, tephra layers). The pollen composition among profiles was standardized to 54 commonly recognized taxa, with percentage composition within each stratigraphic sample prorated to 100% prior to analysis. Near‐surface sediments from these profiles were included as analogues of modern vegetation. Cluster analysis was used as a guide to the classification of 2356 temporal stratigraphic samples, which resulted in the recognition of 16 pollen groups. These groups were summarized in terms of their pollen composition, mapped, and used in combination with terrain information and an ecological knowledge of the study area to construct six physiognomically‐based palaeovegetation zonation models at 2000‐year intervals from 14,000 to 4000 yr bp (radiocarbon years before present). Results The 14,000 yr bp model placed Boreal and Cordilleran Forests proximal to the southern glacial front, whereas Arctic tundra dominated the Yukon Territory–Alaska ice‐free zone. Pollen and macrofossil evidence suggests that this Boreal Forest zone contained a mixture of coniferous and deciduous tree species. Grassland was postulated immediately south of the forest zone, with its northern extreme near 49° N latitude in the Alberta–Montana border area. Separation of the Laurentide and Cordilleran glacial fronts about 12,000 yr bp initiated the northward advance of Boreal Forests into western Canada. By the end of the Hypsithermal at about 6000 yr bp , Boreal Forests occurred near the Arctic Ocean, and Grassland and Aspen Parkland zones may have extended to 54° N and 59° N latitude in Alberta, respectively. Between 6000 and 4000 yr bp , a 5° and 1° latitudinal southward shift of the northern Boreal Forest and Grassland/Aspen Parkland boundaries occurred, respectively, near their contemporary positions with corresponding expansions of the Subarctic and Arctic zones. Modern Canadian Cordilleran Forests along the eastern slopes of the Rocky Mountains were interpreted as originating from the north‐central Montana–south‐western Alberta area. Jack pine (Pinus banksiana Lamb.), a common Boreal Forest species, appears to have entered central Canada via the north side of Lake Superior after 11,000 yr bp . Main conclusions Modern vegetation in central Canada evolved from biomes located in the northern USA during the late‐Quaternary. The Boreal Forest biome contained the same arboreal taxa as the modern vegetation, except it lacked jack pine. The proposed regional palaeovegetation models support the hypothesis of Strong & Hills (2003) , but new independent palaeoecological data will be needed for a proper evaluation.  相似文献   

13.
Jack pine budworm (Choristoneura pinus pinus Free.) (Lepidoptera: Tortricidae) is a native insect that periodically defoliates areas of jack pine (Pinus banksiana Lamb.) in the subboreal forests of North America east of the Rocky Mountains. Outbreaks of jack pine budworm generally occur at 6- to 12-year intervals and collapse after 2–4 years. Periodicity of outbreaks varies and is associated with site-related factors. Survival of early-instar larvae during spring dispersal is tied to the abundance of pollen cones (microsporangiate strobili), which provide a refuge for larvae until current-year needles expand. Jack pine trees that have been heavily defoliated produce few pollen cones in the following year, often resulting in high mortality of early-stage larvae. A diverse guild of generalist parasitoids attack jack pine budworm, but only a few species account for most mortality in any area. Collapsing jack pine budworm populations are characterized by sharp declines in early instar survival, coupled with an increased rate of parasitism in the late larval and pupal stages. The reciprocal interaction between heavy defoliation and low pollen cone production, and increased parasitism of late-stage larvae or pupae, are consistent with second-order density dependence factors identified in analysis of a long-term population data set. Since the 1950s, several jack pine budworm outbreaks have been roughly synchronous over a large geographic area, suggesting that Moran effect processes, as well as moth dispersal or other factors, may be involved in jack pine budworm dynamics. Although the short duration of outbreaks enables most trees to recover, over time dead trees and top-killed trees accumulate in jack pine stands. Jack pine is well adapted to fire and when fires ignite, the accumulation of dead trees and woody debris often leads to intense wildfires followed by prolific regeneration. The three-way interaction of jack pine, jack pine budworm, and fire ultimately serves to maintain vigorous stands and ensures continued hosts for jack pine budworm. Received: October 1, 1999 / Accepted: September 22, 2000  相似文献   

14.
Questions: What was the tree species composition of forests prior to European settlement at the northern hardwood range limit in eastern Québec, Canada? What role did human activities play in the changes in forest composition in this region? Location: Northern range limit of northern hardwoods in the Lower St. Lawrence region of eastern Québec, Canada. Methods: We used early land survey records (1846–1949) of public lands to reconstruct pre‐settlement forest composition. The data consist of ranked tree species enumerations at points or for segments along surveyed lines, with enumerations of forest cover types and notes concerning disturbances. An original procedure was developed to weigh and combine these differing data types (line versus point observations; taxa versus cover enumerations). Change to present‐day forest composition was evaluated by comparing survey records with forest decadal surveys conducted by the government of Québec over the last 30 years (1980–2009). Results: Pre‐settlement dominance of conifers was strong and uniform across the study area, whereas dominance of maple and birches was patchy. Cedar and spruce were less likely to dominate with increasing altitude, whereas maple displayed the reverse trend. Frequency of disturbances, especially logging and fire, increased greatly after 1900. Comparison of survey records and modern plots showed general increases for maple (mentioned frequency increased by 39%), poplar (36%) and paper birch (31%). Considering only taxa ranked first by surveyors, cedar displayed the largest decrease (19%), whereas poplar (15%) and maple (9%) increased significantly. Conclusions: These changes in forest composition can be principally attributed to clear‐cutting and colonization fire disturbances throughout the 20th century, and mostly reflected the propensity of taxa to expand (maples/aspen) or decline (cedar/spruce) with increased disturbance frequency. Québec's land survey archives provide an additional data source to reconstruct and validate our knowledge of North America's pre‐settlement temperate and sub‐boreal forests.  相似文献   

15.
Aim Climate is often regarded as the primary control determining the location of an ecotone between two vegetation zones. However, other ecological factors may also be important, especially when the northern limit of the dominant species of a vegetation zone extends further than the limit of the zone itself. This study aimed to identify the ecological variables explaining the transition between two zones within the boreal biome in Quebec (eastern Canada): the southern mixedwood forests dominated by balsam fir (Abies balsamea) and white birch (Betula papyrifera), and the northern coniferous forests dominated by black spruce (Picea mariana). Location Quebec (eastern Canada). Methods Data from 5023 sampling plots from the ecological inventory of the Québec Ministry of Natural Resources distributed throughout the two bioclimatic zones were used in logistic regressions to determine the relationships between the presence or absence of balsam fir stands and different abiotic and biotic variables, at both stand and landscape scales. Results The presence of balsam fir stands was negatively related to the thick organic horizons, coarse xeric deposits and low positions on the slope, whereas stands were favoured by high elevations, steep slopes and moderate drainage. These results defined the suitable conditions for the development of balsam fir stands. In the coniferous zone these suitable conditions were less abundant. Furthermore, the saturation level of suitable sites was lower, as well as the incidence of balsam fir stands in unsuitable sites (overflow). Balsam fir stands were mostly located near lakes and rivers. All significant variables at both the stand and landscape scales explained between 34 and 42% of the location of the potential northern distribution limit of the mixedwood zone. Main conclusions Our results suggest the important role of historical factors related to post‐glacial vegetation and past disturbances in determining the relative abundance of balsam fir in both zones of the boreal biome.  相似文献   

16.
The white‐footed mouse (Peromyscus leucopus) has expanded its northern limit into southern Québec over the last few decades. P. leucopus is a great disperser and colonizer and is of particular interest because it is considered a primary reservoir for the spirochete bacterium that causes Lyme disease. There is no current information on the gene flow between mouse populations on the mountains and forest fragments found scattered throughout the Montérégie region in southern Québec, and whether various landscape barriers have an effect on their dispersal. We conducted a population genetics analysis on eleven P. leucopus populations using eleven microsatellite markers and showed that isolation by distance was weak, yet barriers were effective. The agricultural matrix had the least effect on gene flow, whereas highways and main rivers were effective barriers. The abundance of ticks collected from mice varied within the study area. Both ticks and mice were screened for the presence of the spirochete bacterium Borrelia burgdorferi, and we predicted areas of greater risk for Lyme disease. Merging our results with ongoing Lyme disease surveillance programs will help determine the future threat of this disease in Québec, and will contribute toward disease prevention and management strategies throughout fragmented landscapes in southern Canada.  相似文献   

17.
Jack pine barrens, once common in northern lower Michigan, mostly have been converted to managed jack pine plantations. Management of the disturbances associated with logging provides the opportunity to maintain the unique plant assemblages of jack pine barrens and nest habitat of the federally endangered Kirtland's warbler. Studies indicate that Carex pensylvanica can develop into dense mats and strongly compete with other barrens species such as Vaccinium angustifolium, which seem to be important species for Kirtland's warbler nest locations. According to forest managers, the most important factors facilitating high cover of V. angustifolium and reducing cover of C. pensylvanica are the amount of shade produced by tree crowns before harvest (pre‐harvest shade), the length of time between harvest and planting (planting delay), and fire. We found that high or low levels of pre‐harvest shade had no effect on cover of either V. angustifolium or C. pensylvanica. Planting delays of at least three years following prescribed burns generally increased cover of V. angustifolium in forest plots, which are important for warbler nesting. Analysis of community composition in openings indicated that burning enhanced the growth of barrens species. We found only weak evidence for a negative correlation between the cover of V. angustifolium and C. pensylvanica on our study sites. The openings created in the jack pine plantation are important refugia for barrens flora that would likely be lost under forests managed strictly for jack pine. Maintenance of jack pine barrens flora and Kirtland's warbler nest habitat is possible within the context of a heavily managed forest plantation system.  相似文献   

18.
Abstract. 1. Survival of newly emerged jack pine budworm Choristoneura pinus pinus is related to the density of available pollen cones (microsporangiate strobili) produced by its host tree, jack pine Pinus banksiana. 2. A 7‐year time series of observations from a plot network in Ontario, Canada, compared the propensity of jack pine to produce pollen cones, τ, on trees that were either defoliated or undisturbed by the jack pine budworm. 3. Non‐defoliated jack pine trees have a high propensity to produce pollen cones. More than one‐third of these trees produced pollen cones in every year of the series. Propensity varied significantly among plots and trees. Temporal patterns in propensity were also highly variable but within a plot propensity was often autocorrelated in time. 4. Defoliation by the jack pine budworm was associated with forest plots composed of the oldest and the largest trees and with the fewest trees per hectare. Within a plot, outbreaks lasted 3 or 4 years although individual trees were only defoliated in 1 or 2 years. 5. The propensity to produce pollen cones in jack pine was reduced in the years after defoliation. The most pronounced reductions in propensity occurred where defoliation was most severe. 6. The reduction in propensity to produce pollen cones resulting from previous defoliation, coupled with the dependence of jack pine budworm survival on the availability of pollen cones, induces a lagged, negative feedback between the density of the consumer and that of its resource. 7. The lagged, density‐dependent relationship between jack pine budworm and its jack pine host contributes to oscillatory dynamics of the jack pine budworm. Comparison of the outbreak behaviour of jack pine budworm with that of the closely related eastern spruce budworm C. fumiferana suggests that differences in the strength of the host‐plant interaction may account for differences in the relative frequency of outbreaks in the respective systems.  相似文献   

19.
Because species affect ecosystem functioning, understanding migration processes is a key component of predicting future ecosystem responses to climate change. This study provides evidence of range expansion under current climatic conditions of an indigenous species with strong ecosystem effects. Surveys of stands along the northern distribution limit of lodgepole pine (Pinus contorta var. latifolia) in central Yukon Territory, Canada showed consistent increases in pine dominance following fire. These patterns differed strongly from those observed at sites where pine has been present for several thousand years. Differences in species thinning rates are unlikely to account for the observed increases in pine dominance. Rates of pine regeneration at its range limits were equivalent to those of spruce, indicating a capacity for rapid local population expansion. The study also found no evidence of strong climatic limitation of pine population growth at the northern distribution limit. We interpret these data as evidence of current pine expansion at its range limits and conclude that the northern distribution of lodgepole pine is not in equilibrium with current climate. This study has implications for our ability to predict vegetation response to climate change when populations may lag in their response to climate.  相似文献   

20.
 Plant responses to saturation vapour pressure deficit (SVPD) were studied by subjecting black spruce [Picea mariana (Mill) B.S.P.] and jack pine seedlings (Pinus banksiana Lamb.) to humid (0.3 – 0.8 kPa) or dry (2.0 – 2.5 kPa SVPD) regimes for 4 weeks using a computer-controlled environmental system to control diurnal variation in SVPD. Dry matter accumulation in needles was not altered by increasing SVPD. However, root growth declined by 60% which increased shoot to root ratio and reduced total seedling dry weight in both black spruce and jack pine. Relative growth rate of jack pine also declined to about half the rate of plants grown under humid conditions. In situ root marking studies showed that the decline in root growth of jack pine under the high SVPD was the result of reduced lateral root initiation, whereas root elongation was unaffected by humidity. A 4-week exposure to dry air increased abscisic acid (ABA) levels in needles, but not roots, of jack pine whereas ABA levels in black spruce were not altered. A short (3-day) exposure failed to increase needle ABA levels in either species. These results suggest that the responses of conifers to dry air were not the result of ABA accumulation. Received: 24 March 1996 / Accepted: 30 May 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号