首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White lupin (Lupinus albus L.) acclimates to phosphorus deficiency (–P) by the development of short, densely clustered lateral roots called proteoid (or cluster) roots. These specialized plant organs display increased exudation of citric and malic acid. The enhanced exudation of organic acids from P stressed white lupin roots is accompanied by increased in vitro phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity. Here we report the cloning of full-length white lupin PEPC and MDH cDNAs. RNA blot analysis indicates enhanced expression of these genes in –P proteoid roots, placing higher gene expression at the site of organic acid exudation. Correspondingly, macroarray analysis of about 1250 ESTs (expressed sequence tags) revealed induced expression of genes involved in organic acid metabolism in –P proteoid roots. In situ hybridization revealed that PEPC and MDH were both expressed in the cortex of emerging and mature proteoid rootlets. A C3 PEPC protein was partially purified from proteoid roots of P deficient white lupin. Native and subunit Mr were determined to be 440 kD and 110 kD, respectively. Citrate and malate were effective inhibitors of in vitro PEPC activity at pH 7. Addition of ATP partially relieved inhibition of PEPC by malate but had little effect on citrate inhibition. Taken together, the results presented here suggest that acclimation of white lupin to low P involves modified expression of plant genes involved in carbon metabolism.  相似文献   

2.
Exudation of carboxylates represents one the most efficient strategies used by P-starved white lupin (Lupinus albus L.) to acquire phosphorus from sparingly soluble sources. This exudation occurs through proteoid root clusters, with citrate being the predominant organic acid released. The occasional detection of malate in whole root exudates suggests that this acid would also be released, but from tissues other than root clusters. To investigate the spatial and temporal pattern of exudation, citrate and malate exudation and concentration were measured in whole roots and root sections of white lupin, from seedling emergence to plant senescence due to P starvation. Both organic acids were detected in whole root exudates of P-stressed plants, and they were released at similar rates throughout the experiment. Malate was predominantly exuded from apices of both seedling taproots and proteoid roots, whereas citrate exudation was restricted to proteoid root clusters. Studies directed to address the association between carboxylate exudation and concentration in proteoid root clusters showed a non-linear response for citrate, within the range of 7 to 23 mol g–1 fresh weight. This association was further assessed by altering citrate concentration in the whole root. Adding P to 24-day-old P-starved plants reduced citrate concentration and exudation to the level of the control P-fed plants, demonstrating that citrate exudation and concentration are associated. Malate exudation and concentration did not correlate significantly. Results indicate that citrate release by P-starved white lupin would occur whenever a certain threshold of citrate concentration is attained, and that the sites, the rates and the span of transient exudation depend on the physiological age of the tissue.  相似文献   

3.
4.
Proteoid roots develop in Lupinus albus L. in response to nutrient stress, especially P. Proteoid roots excrete citrate and thus increase the availability of P, Fe, and Mn in the rhizosphere. In an effort to understand citrate synthesis and organic acid metabolism in proteoid roots of lupin, we have evaluated in vitro enzyme activities of citrate synthase (CS), malate dehydrogenase (MDH), and phosphoenolpyruvate carboxylase (PEPC) in proteoid and normal roots of plants grown with or without P. Organic acid concentrations, respiration rates, and dark 14CO2-labeling patterns were also determined. The in vitro specific activities of CS, MDH, and PEPC and in vivo dark 14CO2 fixation were higher in proteoid roots compared to normal roots, particularly under P stress. Western blot analysis showed that PEPC enzyme protein was more highly expressed in -P proteoid roots compared to other tissues. The majority of the fixed 14C was found in organic acids, predominantly malate and citrate. A larger fraction of citrate was labeled in P- stressed proteoid roots compared to other root tissue. Respiration rates of proteoid roots were 31% less than those of normal roots. The data provide evidence for increased synthesis of citrate in proteoid roots compared to normal roots, particularly under P stress. A portion of the carbon for citrate synthesis is derived from nonautotrophic CO2 fixation via PEPC in proteoid roots.  相似文献   

5.
Abstract. White lupin ( Lupinus albus L.) was grown for 13 weeks in a phosphorus (P) deficient calcareous soil (20% CaCO3, pH(H2O)7.5) which had been sterilized prior to planting and fertilized with nitrate as source of nitrogen. In response to P deficiency, proteoid roots developed which accounted for about 50% of the root dry weight. In the rhizosphere soil of the proteoid root zones, the pH dropped to 4.8 and abundant white precipitates became visible. X-ray spectroscopy and chemical analysis showed that these precipitates consisted of calcium citrate. The amount of citrate released as root exudate by 13-week-old plants was about 1 g plant−1, representing about 23% of the total plant dry weight at harvest. In the rhizosphere soil of the proteoid root zones the concentrations of available P decreased and of available Fe, Mn and Zn increased. The strong acidification of the rhizosphere and the cation/anion uptake ratio of the plants strongly suggests that proteoid roots of white lupin excrete citric acid, rather than citrate, into the rhizosphere leading to intensive chemical extraction of a limited soil volume. In a calcareous soil, citric acid excretion leads to dissolution of CaCO3 and precipitation of calcium citrate in the zone of proteoid roots.  相似文献   

6.
Liang  Ruixia  Li  Chunjian 《Plant and Soil》2003,248(1-2):221-227
In contrast with the well document role of proteoid root formation and carboxylate exudation in acclimation to P deficiency in white lupin (Lupinus albus L.), their role under other nutrient deficiencies and their ecological significance are still poorly understood. In the present work, differences in proteoid root formation, exudation of carboxylates by root clusters, non-proteoid and proteoid root tips by using a non-destructive method, and concentrations of organic acids in the tissues of plants grown in the absence of P, Fe or K were studied. Proton release from roots increased soon after withdrawing Fe from the medium; within three days the solution pH decreased from 6 to about 4, and this increased release in protons continued until the end of the experiment. Acidification appeared much later, on the 10th day and the 14th day after withdrawal of P and K, respectively; the extent of the acidification was also weaker than under –Fe (5.2 for –P and 5.7 for control on the 10th day; 6.0 for –K and 6.1 for control on the 14th day). Root clusters formed when plants were grown under –P and –Fe, but not under –K conditions. The root clusters developed sooner under –Fe conditions, but the number of clusters was far less than under –P. Under P deficiency, root clusters released mainly citrate, but also some malate; while the major organic acid released by root tips of both non-proteoid and proteoid roots was malate. However, under Fe deficiency, the majority of the organic acids exuded both by the root clusters and root tips was malate, whereas only a small amount of citrate was detected. The release rate of citrate by – P root clusters was greater than that by – Fe root clusters. Moreover, the release rate of malate was greater in –Fe root clusters than in –P root clusters, but the opposite was found in proteoid root tips, i.e. faster in –P than in –Fe proteoid root tips. The significances of proteoid root formation and release of organic acids in acclimation to different nutrient deficiencies for white lupin plants are discussed.  相似文献   

7.
When white lupin (Lupinus albus L.) is subjected to P deficiency lateral root development is altered and densely clustered, tertiary lateral roots (proteoid roots) are initiated. These proteoid roots exude large amounts of citrate, which increases P solubilization. In the current study plants were grown with either 1 mM P (+P-treated) or without P (-P-treated). Shoots or roots of intact plants from both P treatments were labeled independently with 14CO2 to compare the relative contribution of C fixed in each with the C exuded from roots as citrate and other organic acids. About 25-fold more acid-stable 14C, primarily in citrate and malate, was recovered in exudates from the roots of -P-treated plants compared with +P-treated plants. The rate of in vivo C fixation in roots was about 4-fold higher in -P-treated plants than in +P-treated plants. Evidence from labeling intact shoots or roots indicates that synthesis of citrate exuded by -P-treated roots is directly related to nonphotosynthetic C fixation in roots. C fixed in roots of -P-treated plants contributed about 25 and 34% of the C exuded as citrate and malate, respectively. Nonphotosynthetic C fixation in white lupin roots is an integral component in the exudation of large amounts of citrate and malate, thus increasing the P available to the plant.  相似文献   

8.
White lupin (Lupinus albus L.) is able to acclimate to phosphorus deficiency by forming proteoid roots that release a large amount of citric acid, resulting in the mobilization of sparingly soluble soil phosphate in the rhizosphere. The mechanisms responsible for the release of organic acids have not been fully elucidated. In this study, we focused on the link between citrate and malate release and the release of H+ and other inorganic ions by proteoid roots of white lupin. The release of citrate was closely correlated with the release of H+, K+, Na+ and Mg2+, but not with that of Ca2+. The stoichiometric relationships between citrate release and the release of H+, K+, Na+ and Mg2+ were 1 : 1.3, 1 : 2.1, 1 : 1.5 and 1 : 0.47, respectively. Similar correlations were found between exudation of malate and cations. During 30 min incubation, fusicoccin addition stimulated H+ and malate release, but not citrate release. A concomitant stimulation of H+, malate and citrate release was measured after 60 min incubation. Vanadate inhibited the release of H+ and malate, but not that of citrate. Anthracene-9-carboxylic acid, an anion channel blocker, caused a concomitant decrease in release of citrate, malate and H+. We conclude that for export of citrate across the plasma membrane of proteoid root cells, H+ release is not strictly related to citrate release. Other cations such as K+ and Na+ can also serve as counterions for citrate release. In contrast, malate release shows a strong H+ release dependency.  相似文献   

9.
Acetyl-coenzyme A (CoA) is used in the cytosol of plant cells for the synthesis of a diverse set of phytochemicals including waxes, isoprenoids, stilbenes, and flavonoids. The source of cytosolic acetyl-CoA is unclear. We identified two Arabidopsis cDNAs that encode proteins similar to the amino and carboxy portions of human ATP-citrate lyase (ACL). Coexpression of these cDNAs in yeast (Saccharomyces cerevisiae) confers ACL activity, indicating that both the Arabidopsis genes are required for ACL activity. Arabidopsis ACL is a heteromeric enzyme composed of two distinct subunits, ACLA (45 kD) and ACLB (65 kD). The holoprotein has a molecular mass of 500 kD, which corresponds to a heterooctomer with an A(4)B(4) configuration. ACL activity and the ACLA and ACLB polypeptides are located in the cytosol, consistent with the lack of targeting peptides in the ACLA and ACLB sequences. In the Arabidopsis genome, three genes encode for the ACLA subunit (ACLA-1, At1g10670; ACLA-2, At1g60810; and ACLA-3, At1g09430), and two genes encode the ACLB subunit (ACLB-1, At3g06650 and ACLB-2, At5g49460). The ACLA and ACLB mRNAs accumulate in coordinated spatial and temporal patterns during plant development. This complex accumulation pattern is consistent with the predicted physiological needs for cytosolic acetyl-CoA, and is closely coordinated with the accumulation pattern of cytosolic acetyl-CoA carboxylase, an enzyme using cytosolic acetyl-CoA as a substrate. Taken together, these results indicate that ACL, encoded by the ACLA and ACLB genes of Arabidopsis, generates cytosolic acetyl-CoA. The heteromeric organization of this enzyme is common to green plants (including Chlorophyceae, Marchantimorpha, Bryopsida, Pinaceae, monocotyledons, and eudicots), species of fungi, Glaucophytes, Chlamydomonas, and prokaryotes. In contrast, all known animal ACL enzymes have a homomeric structure, indicating that a evolutionary fusion of the ACLA and ACLB genes probably occurred early in the evolutionary history of this kingdom.  相似文献   

10.
White lupin ( Lupinus albus L.) is able to grow on soils with sparingly available phosphate (P) by producing specialized structures called cluster roots. To mobilize sparingly soluble P forms in soils, cluster roots release substantial amounts of carboxylates and concomitantly acidify the rhizosphere. The relationship between acidification and carboxylate exudation is still largely unknown. In the present work, we studied the linkage between organic acids (malate and citrate) and proton exudations in cluster roots of P-deficient white lupin. After the illumination started, citrate exudation increased transiently and reached a maximum after 5 h. This effect was accompanied by a strong acidification of the external medium and alkalinization of the cytosol, as evidenced by in vivo nuclear magnetic resonance (NMR) analysis. Fusicoccin, an activator of the plasma membrane (PM) H+-ATPase, stimulated citrate exudation, whereas vanadate, an inhibitor of the H+-ATPase, reduced citrate exudation. The burst of citrate exudation was associated with an increase in expression of the LHA1 PM H+-ATPase gene, an increased amount of H+-ATPase protein, a shift in pH optimum of the enzyme and post-translational modification of an H+-ATPase protein involving binding of activating 14-3-3 protein. Taken together, our results indicate a close link in cluster roots of P-deficient white lupin between the burst of citrate exudation and PM H+-ATPase-catalysed proton efflux.  相似文献   

11.
Watt  Michelle  Evans  John R. 《Plant and Soil》2003,248(1-2):271-283
White lupin and soybean have contrasting root morphologies: white lupin develops proteoid or cluster roots, roots with discreet clusters of short, determinate branch roots (rootlets) while soybean develops a more fibrous root system with evenly distributed, longer branch roots. Growth and P acquisition by white lupin and soybean were compared in a soil high in bound, total P, with or without additional inorganic P applied in solution. Additional P increased biomass by 25% and doubled total P in soybean. In contrast, white lupin did not respond to additional P in biomass or total P. However added P decreased cluster development on proteoid roots indicating that white lupin sensed the added P. The reduction in cluster weight per plant was exactly countered by an increase in dry weight of other roots. Soybean root development responded to P application, proliferating branch roots with active meristems in the upper portion of the soil profile where P was applied, and reducing root weight to plant weight by 13%. White lupin did not proliferate roots in response to P application. When P was not added to soil, soybean and lupin acquired similar P per unit root dry weight. However, white lupin accumulated 4.8 times more P per unit root length, suggesting that P acquisition in these plants involved other mechanisms such as the exudation of P solubilizing compounds. Soybean accessed P by developing more root length thus colonising more soil volume than white lupin and, therefore, was better able to take advantage of the added P. Pericycle and root tip meristem activities were critical to the differences in root development between white lupin and soybean, and therefore their responses to plant and soil P.  相似文献   

12.
Harsh hakea (Hakea prostrata R.Br.) is a member of the Proteaceae family, which is highly represented on the extremely nutrient-impoverished soils in southwest Australia. When phosphorus is limiting, harsh hakea develops proteoid or cluster roots that release carboxylates that mobilize sparingly soluble phosphate in the rhizosphere. To investigate the physiology underlying the synthesis and exudation of carboxylates from cluster roots in Proteaceae, we measured O2 consumption, CO2 release, internal carboxylate concentrations and carboxylate exudation, and the abundance of the enzymes phosphoenolpyruvate carboxylase and alternative oxidase (AOX) over a 3-week time course of cluster-root development. Peak rates of citrate and malate exudation were observed from 12- to 13-d-old cluster roots, preceded by a reduction in cluster-root total protein levels and a reduced rate of O2 consumption. In harsh hakea, phosphoenolpyruvate carboxylase expression was relatively constant in cluster roots, regardless of developmental stage. During cluster-root maturation, however, the expression of AOX protein increased prior to the time when citrate and malate exudation peaked. This increase in AOX protein levels is presumably needed to allow a greater flow of electrons through the mitochondrial electron transport chain in the absence of rapid ATP turnover. Citrate and isocitrate synthesis and accumulation contributed in a major way to the subsequent burst of citrate and malate exudation. Phosphorus accumulated by harsh hakea cluster roots was remobilized during senescence as part of their efficient P cycling strategy for growth on nutrient impoverished soils.  相似文献   

13.
de Bakker  N.V.J.  Hemminga  M. A.  Van Soelen  J. 《Plant and Soil》1999,215(1):19-27
Incorporation of cover crops into cropping systems may contribute to a more efficient utilization of soil and fertilizer P by less P-efficient crops through exudation of P-mobilizing compounds by the roots of P-efficient plant species. The main objective of the present work was to test this hypothesis. First a method has been developed which allows the quantification of organic anion exudation from individual cluster roots formed by P-deficient white lupin (Lupinus albus L.). Lupin plants were grown in nutrient solution at 1 μM P and in a low P loess in small rhizotrons. Organic anions exuded from intact plants grown in nutrient solution were collected from individual cluster roots and root tips sealed in small compartments by an anion-exchange resin placed in nylon bags (resin-bags). Succinate was the dominant organic anion exuded followed by citrate and malate. The mean of citrate exudation-rate was 0.06 pmol mm−1 s−1 with exudation highly dependent on the citrate concentration and on the age of the cluster roots. Exudates from cluster roots and root tips grown at the soil surface (rhizotron-grown plants) were collected using overlayered resin–agar (resin mixed with agar). Citrate exudation from cluster roots was 10 times higher than that from root tips. Fractionation of P in the cluster root rhizosphere-soil indicates that white lupin can mobilize P not only from the available and acid-soluble P, but also from the stable residual soil P fractions. In pot experiments with an acid luvisol derived from loess low in available P, growth of wheat was significantly improved when mixed-cropped with white lupin due to improved P uptake. Both in mixed culture and in rotation wheat could benefit from the P mobilization capacity of white lupin, supporting the hypothesis above. Nine tropical leguminous cover crops and maize were grown in a pot experiment using a luvisol from Northern Nigeria low in available P. All plant species derived most of their P from the resin and bicarbonate-extractable inorganic P. Organic P (Po) accumulated particularly in the rhizosphere of all plant species. There was a significant negative correlation between the species-specific rhizosphere acid phosphatase activity and Po accumulation. Growth and P uptake of maize grown in rotation after legumes were enhanced indicating that improved P nutrition was a contributing factor. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
White lupins (Lupinus albus L.) respond to phosphate deficiency by producing special root structures called cluster roots. These cluster roots secrete large amounts of carboxylates into the rhizosphere, mostly citrate and malate, which act as phosphate solubilizers and enable the plant to grow in soils with sparingly available phosphate. The success and efficiency of such a P-acquisition strategy strongly depends on the persistence and stability of the carboxylates in the soil, a parameter that is influenced to a large extent by biodegradation through rhizosphere bacteria and fungi. In this study, we show that white lupin roots use several mechanisms to reduce microbial growth. The abundance of bacteria associated with cluster roots was decreased at the mature state of the cluster roots, where a burst of organic acid excretion and a drastic pH decrease is observed. Excretion of phenolic compounds, mainly isoflavonoids, induced fungal sporulation, indicating that vegetative growth, and thus potential citrate consumption, is reduced. In addition, the activity of two antifungal cell wall-degrading enzymes, chitinase and glucanase, were highest at the stage preceding the citrate excretion. Therefore, our results suggest that white lupin has developed a complex strategy to reduce microbial degradation of the phosphate-solubilizing agents.  相似文献   

15.
Kania  Angelika  Langlade  Nicolas  Martinoia  Enrico  Neumann  Günter 《Plant and Soil》2003,248(1-2):117-127
A possible contribution of alterations in metabolic sequences involved in citrate catabolism, to intracellular accumulation and subsequent release of citrate was investigated in cluster roots of phosphorus (P)-deficient white lupin (Lupinus albus L.). Citrate accumulation during maturation of root clusters was associated with decreased levels of intracellular soluble Pi and ATP, and with reduced rates of respiration. Inhibitor studies with KCN and salicylhydroxamic acid (SHAM) suggest a reduced capacity of both the cytochrome pathway and of the alternative respiration with a concomitant decrease of immunochemically detectable protein levels of the alternative oxidase. Reduced respiration seems to be related to a general impairment of the respiratory system, rather than to limitation of respiratory substrates such as Pi and adenylates, as indicated by the absence of stimulatory effects of the uncoupler CCCP. The citrate/malate ratio in juvenile root clusters with high rates of respiration and low inherent levels of citrate accumulation was increased by short-term application (4–8 h) of azide and SHAM as respiration inhibitors. During maturation of root clusters, a shift from intracellular malic acid to citric acid accumulation was associated also with down-regulation of ATP citrate lyase (ACL), which catalyzes cleavage of citrate into acetyl-CoA and oxaloacetate with a putative function as anapleurotic source for the production of acetyl-CoA under P-deficient conditions. Inhibition of nitrate uptake and assimilation is a general response to P limitation in many plant species including white lupin. Reduced consumption of the amino acceptor 2-oxoglutaric acid as a product of citrate turnover may therefore contribute to increased citrate accumulation. Accordingly, artificial inhibition of nitrate reduction by localized application of tungstate significantly increased the citrate/malate ratio in juvenile root clusters. Lowering the cytosolic pH by external application of propionate stimulated citrate and malate exudation in non-cluster lateral roots and in developing root clusters. This effect was reverted by preincubation with phosphonate to buffer the cytosol. The results suggest that acidification of the cytosol may be an important factor, triggering the transient release of citrate and protons from mature root clusters in P-deficient white lupin.  相似文献   

16.
Cytosolic acetyl‐CoA is involved in the synthesis of a variety of compounds, including waxes, sterols and rubber, and is generated by the ATP citrate lyase (ACL). Plants over‐expressing ACL were generated in an effort to understand the contribution of ACL activity to the carbon flux of acetyl‐CoA to metabolic pathways occurring in the cytosol. Transgenic Arabidopsis plants synthesizing the polyester polyhydroxybutyrate (PHB) from cytosolic acetyl‐CoA have reduced growth and wax content, consistent with a reduction in the availability of cytosolic acetyl‐CoA to endogenous pathways. Increasing the ACL activity via the over‐expression of the ACLA and ACLB subunits reversed the phenotypes associated with PHB synthesis while maintaining polymer synthesis. PHB production by itself was associated with an increase in ACL activity that occurred in the absence of changes in steady‐state mRNA or protein level, indicating a post‐translational regulation of ACL activity in response to sink strength. Over‐expression of ACL in Arabidopsis was associated with a 30% increase in wax on stems, while over‐expression of a chimeric homomeric ACL in the laticifer of roots of dandelion led to a four‐ and two‐fold increase in rubber and triterpene content, respectively. Synthesis of PHB and over‐expression of ACL also changed the amount of the cutin monomer octadecadien‐1,18‐dioic acid, revealing an unsuspected link between cytosolic acetyl‐CoA and cutin biosynthesis. Together, these results reveal the complexity of ACL regulation and its central role in influencing the carbon flux to metabolic pathways using cytosolic acetyl‐CoA, including wax and polyisoprenoids.  相似文献   

17.
缺磷条件下白羽扇豆排根发育与生长素及miR164的关系   总被引:1,自引:1,他引:0  
以缺磷条件下白羽扇豆为材料,观察了外源生长素NAA和生长素运输的抑制剂NPA 对白羽扇豆排根形成及其活性的影响,同时运用基因芯片与RT-PCR的方法分析了生长素信号转导途径中转录因子NAC1以及调控NAC1表达的上游microRNA164(miR164)在不同发育阶段排根中的表达变化,以探讨白羽扇豆在缺磷时排根形成与发育的调控机制.结果表明,缺磷胁迫下排根大量形成与生长素及其运输有关,排根NAC1的表达在初生阶段上调,成熟后下调,并受其上游的miR164的负调控,而排根衰老后则上述基因的表达都减弱.研究发现,在缺磷诱导的排根发生至发育成熟过程中,miR164、NAC1、生长素与排根发育之间很可能组成了一个级联系统,从而控制排根的发生与发育.  相似文献   

18.
We investigated (1) the effect of constant and altered inorganic phosphate (Pi) supply (1–100 mmol m–3) on proteoid root production by white lupin ( Lupinus albus L.); and (2) the variation in citrate efflux, enzyme activity and phosphate uptake along the proteoid root axis in solution culture. Proteoid root formation was greatest at Pi solution concentrations of 1–10 mmol m–3 and was suppressed at 25 mmol m–3 Pi and higher. Except at 1 mmol m–3 Pi, the formation of proteoid roots did not affect plant dry matter yields or shoot to root dry matter ratios, indicating that proteoid roots can form under conditions of adequate P supply and not at the expense of dry matter production. Plants with over 50% of the root system as proteoid roots had tissue P concentrations considered adequate for maximum growth, providing additional evidence that proteoid roots can form on P-sufficient plants. There was an inverse relationship between the Pi concentration in the youngest mature leaf and proteoid root formation. Citrate efflux and the activities of enzymes associated with citric acid synthesis (phosphoenolpyruvate carboxylase and malate dehydrogenase) varied along the proteoid root axis, being greatest in young proteoid rootlets of the 1–3 cm region from the root tip. Citrate release from the 0–1 and 5–9 cm regions of the proteoid root was only 7% (per unit root length) of that from the 1–3 cm segment. Electrical potential and 32Pi uptake measurements showed that Pi uptake was more uniform along the proteoid root than citrate efflux.  相似文献   

19.
Acid phosphatase activity in phosphorus-deficient white lupin roots   总被引:15,自引:0,他引:15  
White lupin ( Lupinus albus L.) develops proteoid roots when grown in phosphorus (P)-deficient conditions. These short, lateral, densely clustered roots are adapted to increase P availability. Previous studies from our laboratory have shown proteoid roots have higher rates of non-photosynthetic carbon fixation than normal roots and altered metabolism to support organic acid exudation, which serves to solubilize P in the rhizosphere. The present work indicates that proteoid roots possess additional adaptations for increasing P availability and possibly for conserving P in the plant. Roots from P-deficient (–P) plants had significantly greater acid phosphatase activity in both root extracts and root exudates than comparable samples from P-sufficient (+P) plants beginning 10 d after emergence. The increase in activity in –P plants was most pronounced in the proteoid regions. In contrast, no induction of phytase activity was found in –P plants compared to +P plants. The number of proteoid roots present was not affected by the source of phosphorus supplied, whether organic or inorganic forms. Adding molybdate to the roots increased the number of proteoid roots in plants supplied with organic P, but not inorganic P. Increased acid phosphatase activity was detected in root exudates in the presence of organic P sources. Native-polyacrylamide gel electrophoresis demonstrated that under P-deficient conditions, a unique isoform of acid phosphatase was induced between 10 and 12 d after emergence. This isoform was found not only within the root, but it comprised the major form exuded from proteoid roots of –P plants. The fact that exudation of proteoid-root-specific acid phosphatase coincides with proteoid root development and increased exudation of organic acids indicates that white lupin has several coordinated adaptive strategies to P-deficient conditions.  相似文献   

20.
The internal concentration of isoflavonoids in white lupin (Lupinus albus) cluster roots and the exudation of isoflavonoids by these roots were investigated with respect to the effects of phosphorus (P) supply, root type and cluster-root developmental stage.To identify and quantify the major isoflavonoids exuded by white lupin roots, we used high-pressure liquid chromatography (HPLC) coupled to electrospray ionization (ESI) in mass spectrometry (MS).The major exuded isoflavonoids were identified as genistein and hydroxygenistein and their corresponding mono- and diglucoside conjugates. Exudation of isoflavonoids during the incubation period used was higher in P-deficient than in P-sufficient plants and higher in cluster roots than in noncluster roots. The peak of exudation occurred in juvenile and immature cluster roots, while exudation decreased in mature cluster roots.Cluster-root exudation activity was characterized by a burst of isoflavonoids at the stage preceding the peak of organic acid exudation. The potential involvement of ATP-citrate lyase in controlling citrate and isoflavonoid exudation is discussed, as well as the possible impact of phenolics in repelling rhizosphere microbial citrate consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号