首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a double-blind parallel-group study, serum lipids and visceral fat/total fat ratio in young women (n=49) with variants of lipid transporters, i.e., fatty acid binding protein 2 (FABP2) and microsomal triglyceride transfer protein (MTP), were analyzed by substituting dietary triacylglycerol (TAG) with sn-1,3-diacylglycerol (DAG). All subjects, including some with the hyperlipidemia-prone genotypes Ala54Thr of FABP2 and c-493g of MTP, received DAG or TAG (20 g/day) for 8 weeks. Reductions of serum lipids from weeks 4 to 8 in FABP2-Ala54Thr heterozygotes and MTP -493g homozygotes were significantly different between the DAG and TAG groups (p<0.05, p<0.01). Visceral fat/total fat (%), as determined by computed tomography (CT), was lower in FABP2-Ala54Thr heterozygotes (p<0.05) of the DAG group. The apoCII/CIII ratio was higher in the DAG group than in the TAG group (p<0.01). Other variants of lipid metabolism, including peroxisome proliferator activated receptors (PPARs) alpha and gamma and SREBP cleavage-activating protein (SCAP), were only slightly affected by dietary DAG. CONCLUSION: improvement of serum lipid profiles and visceral fat/total fat ratio (CT) was potentiated by DAG intake in subjects with hyperlipidemia-prone genotypes (Ala54Thr heterozygotes of FABP2 and -493g homozygotes of MTP).  相似文献   

2.
Although microsomal triglyceride transfer protein (MTP) and newly synthesized triglyceride (TG) are critical for co-translational targeting of apolipoprotein B (apoB100) to lipoprotein assembly in hepatoma cell lines, their roles in the later stages of lipoprotein assembly remain unclear. Using N-acetyl-Leu-Leu-norleucinal to prevent proteasomal degradation, HepG2 cells were radiolabeled and chased for 0-90 min (chase I). The medium was changed and cells chased for another 150 min (chase II) in the absence (control) or presence of Pfizer MTP inhibitor CP-10447 (CP). As chase I was extended, inhibition of apoB100 secretion by CP during chase II decreased from 75.9% to only 15% of control (no CP during chase II). Additional studies were conducted in which chase I was either 0 or 90 min, and chase II was in the presence of [(3)H]glycerol and either BSA (control), CP (inhibits both MTP activity and TG synthesis),BMS-1976360-1) (BMS) (inhibits only MTP activity), or triacsin C (TC) (inhibits only TG synthesis). When chase I was 0 min, CP, BMS, and TC reduced apoB100 secretion during chase II by 75.3, 73.9, and 53.9%. However, when chase I was 90 min, those agents reduced apoB100 secretion during chase II by only 16.0, 19.2, and 13.9%. Of note, all three inhibited secretion of newly synthesized TG during chase II by 80, 80, and 40%, whether chase I was 0 or 90 min. In both HepG2 cells and McA-RH7777 cells, if chase I was at least 60 min, inhibition of TG synthesis and/or MTP activity did not affect the density of secreted apoB100-lipoproteins under basal conditions. Oleic acid increased secretion of TG-enriched apoB100-lipoproteins similarly in the absence or presence of either of CP, BMS, or TC. We conclude that neither MTP nor newly synthesized TG is necessary for the later stages of apoB100-lipoprotein assembly and secretion in either HepG2 or McA-RH7777 cells.  相似文献   

3.
We have reported previously that a cinnamon extract (CE), high in type A polyphenols, prevents fructose feeding-induced decreases in insulin sensitivity and suggested that improvements of insulin sensitivity by CE were attributable, in part, to enhanced insulin signaling. In this study, we examined the effects of CE on postprandial apolipoprotein (apo) B-48 increase in fructose-fed rats, and the secretion of apoB48 in freshly isolated intestinal enterocytes of fructose-fed hamsters. In an olive oil loading study, a water-soluble CE (Cinnulin PF, 50 mg/kg body weight, orally) decreased serum triglyceride (TG) levels and the over production of total- and TG-rich lipoprotein-apoB48. In ex vivo 35S labeling study, significant decreases were also observed in apoB48 secretion into the media in enterocytes isolated from fructose-fed hamsters. We also investigated the molecular mechanisms of the effects of CE on the expression of genes of the insulin signaling pathway [insulin receptor (IR), IR substrate (IRS)1, IRS2 and Akt1], and lipoprotein metabolism [microsomal TG transfer protein (MTP), sterol regulatory element-binding protein (SREBP1c) in isolated primary enterocytes of fructose-fed hamsters, using quantitative real-time polymerase chain reaction. The CE reversed the expression of the impaired IR, IRS1, IRS2 and Akt1 mRNA levels and inhibited the overexpression of MTP and SREBP1c mRNA levels of enterocytes. Taken together, our data suggest that the postprandial hypertriglycerides and the overproduction of apoB48 can be acutely inhibited by a CE by a mechanism involving improvements of insulin sensitivity of intestinal enterocytes and regulation of MTP and SREBP1c levels. We present both in vivo and ex vivo evidence that a CE improves the postprandial overproduction of intestinal apoB48-containing lipoproteins by ameliorating intestinal insulin resistance and may be beneficial in the control of lipid metabolism.  相似文献   

4.
Recent studies indicate that microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB) interact physically via two specific binding sites located within the amino-terminal globular region of apoB100. The first site is thought to be within the first 5.8% of the amino-terminal sequence, and the second site is between 9 and 16% of the amino-terminal sequence. It is not clear from prior studies whether these sites have unique or overlapping functions. Furthermore, there are no data differentiating between lipid transfer and potential chaperone functions of MTP. In the present study we have attempted to further characterize the physiologic interaction between apoB and MTP and to determine the relationship between the binding and lipid transfer aspects of the interaction. HepG2 cells were transiently transfected with apoB cDNAs, and MTP binding to apoB polypeptides was determined by two-step immunoprecipitation. MTP bound equally well to apoB polypeptides with (apoB13, 16,beta, apoB34, and apoB42) or without (apoB16, apoB13, and 16 or apoB13, 13, and 16) beta sheet domains. When proteasomal degradation of newly synthesized apoB polypeptides was blocked, MTP binding to all of the apoB polypeptides was only modestly affected by lipid availability and was independent of MTP-associated lipid transfer. Furthermore, MTP did not bind directly to a portion of the first beta sheet domain. We created two apoB constructs (apoB16del and apoB34del) by deleting the first 210 amino acids of apoB16 and apoB34. These apoB polypeptides, therefore, lacked the putative first MTP binding site. MTP binding to apoB16del and apoB34del was decreased significantly. However, the secretion of apoB16del was not different from apoB16, whereas the secretion of apoB34del was impaired significantly. Our results indicate that the interaction between MTP and apoB involves independent binding and lipid transfer activities but that both activities are required for the secretion of apolipoprotein B from liver cells.  相似文献   

5.
Fatty acid-binding protein 2 (FABP2) is a cytosolic protein expressed exclusively in epithelial cells of the small intestine. Some, albeit not conclusive, evidence indicates that the Thr-allele of FABP2 Ala54Thr polymorphism is associated with type 2 diabetes. More recently, common FABP2 promoter polymorphisms have shown association with postprandial increase of triglycerides, body composition and plasma lipid levels. Therefore, we reasoned that variants in the FABP2 promoter may also predispose to type 2 diabetes mellitus. In our Caucasian study population, we found three SNPs and three insertion-deletion polymorphisms that are in complete linkage disequilibrium defining promoter haplotype A and B within 1kb 5' of the FABP2 initiation codon. Haplotype calculations indicated that the FABP2 promoter and Ala54Thr variants were strongly linked. Functional analysis of promoter fragments demonstrated that haplotype difference is caused by polymorphisms within 260 bp downstream of the FABP2 initiation codon. Using a prospective case-control study nested within the EPIC-Potsdam cohort of 192 incident type 2 diabetes cases and 384 sex-/age-matched controls, male subjects carrying the FABP2 haplotype B allele showed significantly decreased risk of type 2 diabetes when adjusted for BMI (OR = 0.50, 95 % CI = 0.28 - 0.87, p < 0.05) and additional covariates (OR = 0.42, 95 % CI 0.22 - 0.81, p < 0.01). Further adjustment for the Ala54Thr polymorphism revealed an OR of 0.18 (95 % CI 0.06 - 0.49, p < 0.001). Similarly, Ala/Ala homozygote males carrying the promoter haplotype B had decreased risk (0.33, 0.11 - 0.94, p < 0.05) of type 2 diabetes after stratification for the Ala54Thr polymorphism. FABP2 promoter haplotypes or genotype combinations defined by the promoter and Ala54Thr polymorphism were not associated with BMI, body fat, leptin, HbA (1c), total cholesterol or HDL. In conclusion, our findings suggest that the functional FABP2 promoter haplotype may contribute to type 2 diabetes in a sex-specific manner.  相似文献   

6.
The microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB) belong to the vitellogenin (VTG) family of lipid transfer proteins. MTP is essential for the intracellular assembly and secretion of apoB-containing lipoproteins, the key intravascular lipid transport proteins in vertebrates. We report the predicted three-dimensional structure of the C-terminal lipid binding cavity of MTP, modeled on the crystal structure of the lamprey VTG gene product, lipovitellin. The cavity in MTP resembles those found in the intracellular lipid-binding proteins and bactericidal/permeability-increasing protein. Two conserved helices, designated A and B, at the entrance to the MTP cavity mediate lipid acquisition and binding. Helix A (amino acids 725-736) interacts with membranes in a manner similar to viral fusion peptides. Mutation of helix A blocks the interaction of MTP with phospholipid vesicles containing triglyceride and impairs triglyceride binding. Mutations of helix B (amino acids 781-786) and of N780Y, which causes abetalipoproteinemia, have no impact on the interaction of MTP with phospholipid vesicles but impair triglyceride binding. We propose that insertion of helix A into lipid membranes is necessary for the acquisition of neutral lipids and that helix B is required for their transfer to the lipid binding cavity of MTP.  相似文献   

7.
A polymorphism in FABP2 that results in an alanine-to-threonine substitution at amino acid 54 of the intestinal fatty acid-binding protein (IFABP) is associated with insulin resistance in Pima Indians. In vitro, the threonine form (Thr54) has a higher binding affinity for long-chain fatty acids than does the alanine form (Ala54). We tested whether this polymorphism affected metabolic responses to dietary fat, in vivo. Eighteen healthy Pima Indians, half homozygous for the Thr54 form of IFABP and half homozygous for the Ala54 form, were studied. The groups were matched for sex, age, and body mass index. Plasma triglyceride, nonesterified fatty acid (NEFA), glucose, and insulin responses were measured after a mixed meal (35% of daily energy requirements, 50 g of fat) and after a high fat challenge (1362 kcal, 129 g of fat). NEFA concentrations were approximately 15% higher after the mixed meal and peaked earlier and were approximately 20% higher at 7 h in response to the high fat test meal in Thr54 homozygotes compared with Ala54 homozygotes. Insulin responses to the test meals tended to be higher in Thr54 homozygotes, but glucose and triglyceride responses were not different.The results of this study suggest that the Thr54 form of IFABP is associated with higher and prolonged NEFA responses to dietary fat in vivo. Higher NEFA concentrations may contribute to insulin resistance and hyperinsulinemia in individuals with this allele.  相似文献   

8.
A transition of G to A at codon 54 of FABP2 results in an amino acid substitution (Ala54 to Thr54). This polymorphism was associated with some cardiovascular risk factors. The aim of our study was to investigate the influence of Thr54 polymorphism in the FABP2 gene on obesity anthropometric parameters and cardiovascular risk factors. A population of 226 obesity (body mass index >30) nondiabetic outpatients were analyzed. An indirect calorimetry, tetrapolar electrical bioimpedance, blood pressure, a serial assessment of nutritional intake with 3 days of written food records, and biochemical analysis (lipid profile, adipocytokines, insulin, CRP, and lipoprotein-a) were performed. The statistical analysis was performed for the combined ALA54/THR54 and THR54/THR54 as a mutant group and wild type ALA54/ALA54 as a second group. Two-hundred and twenty-six patients gave informed consent and were enrolled in the study. The mean age was 44.2+/-16 years and the mean BMI 35.1+/-5.1, with 63 males (28.3%) and 163 females (71.7%). One-hundred and thirteen patients (50%) had the genotype ALA54/ALA54 (wild group) and 113 (50%) patients had the genotype ALA54/THR54 (91 patients, 40.2%) or THR54/THR54 (22 patients, 9.8%) (mutant group). The ANOVA analysis of the three groups ( ALA54/THR54, THR54/THR54 and ALA54/ALA54) shows a higher levels of fat mass in Thr54/Thr54 group (45.6+/-14.6 kg) than Ala54/Ala54 (37.5+/-11.2 kg: p<0.05), without differences with Ala54/Thr54 group (41.2+/-13.5 kg). CRP, IL-6, and lipoprotein-a were higher in mutant group ( ALA54/THR54, THR54/THR54) than in wild group ( ALA54/ALA54). The novel finding of this study is the association of the Thr54/Ala54 and Thr54/Thr54 FABP2 phenotypes with higher levels of C reactive protein, IL6, and lipoprotein-a. Further studies are needed to explain the role of this polymorphism in different populations.  相似文献   

9.
Apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) are necessary for lipoprotein assembly. ApoB consists of five structural domains, betaalpha(1)-beta(1)-alpha(2)-beta(2)-alpha(3). We propose that MTP contains three structural motifs (N-terminal beta-barrel, central alpha-helix, and C-terminal lipid cavity) and three functional domains (lipid transfer, membrane associating, and apoB binding). MTP's lipid transfer activity is required for the assembly of lipoproteins. This activity renders nascent apoB secretion-competent and may be involved in the import of triglycerides into the lumen of endoplasmic reticulum. In addition, MTP binds to apoB with high affinity involving ionic interactions. MTP interacts at multiple sites in the N-terminal betaalpha(1) structural domain of apoB. A novel antagonist that inhibits apoB-MTP binding decreases apoB secretion. Furthermore, site-directed mutagenesis and deletion analyses that inhibit apoB-MTP binding decrease apoB secretion. Lipids modulate protein-protein interactions between apoB and MTP. Lipids associated with MTP increase apoB-MTP binding whereas lipids associated with apoB decrease this binding. Thus, specific antagonist, site-directed mutagenesis, deletion analyses, and modulation studies support the notion that apoB-MTP binding plays a role in lipoprotein biogenesis. However, specific steps in lipoprotein assembly that require apoB-MTP binding have not been identified. ApoB-MTP binding may be important for the prevention of degradation and lipidation of nascent apoB.  相似文献   

10.
Vitellogenins (Vtg) are ancient lipid transport and storage proteins and members of the large lipid transfer protein (LLTP) gene family, which includes insect apolipophorin II/I, apolipoprotein B (apoB), and the microsomal triglyceride transfer protein (MTP). Lipidation of Vtg occurs at its site of synthesis in vertebrate liver, insect fat body, and nematode intestine; however, the mechanism of Vtg lipid acquisition is unknown. To explore whether Vtg biogenesis requires the apoB cofactor and LLTP family member, MTP, Vtg was expressed in COS cells with and without coexpression of the 97-kDa subunit of human MTP. Expression of Vtg alone gave rise to a approximately 220-kDa apoprotein, which was predominantly confined to an intracellular location. Coexpression of Vtg with human MTP enhanced Vtg secretion by 5-fold, without dramatically affecting its intracellular stability. A comparison of wild type and a triglyceride transfer-defective form of MTP revealed that both were capable of promoting Vtg secretion, whereas only wild type MTP could promote the secretion of apoB41 (amino-terminal 41% of apoB). These studies demonstrate that the biogenesis of Vtg is MTP-dependent and that MTP is the likely ancestral member of the LLTP gene family.  相似文献   

11.
Previously, based on distinct requirement of microsomal triglyceride transfer protein (MTP) and kinetics of triglyceride (TG) utilization, we concluded that assembly of very low density lipoproteins (VLDL) containing B48 or B100 was achieved through different paths (Wang, Y. , McLeod, R. S., and Yao, Z. (1997) J. Biol. Chem. 272, 12272-12278). To test if the apparent dual mechanisms were accounted for by apolipoprotein B (apoB) length, we studied VLDL assembly using transfected cells expressing various apoB forms (e.g. B64, B72, B80, and B100). For each apoB, enlargement of lipoprotein to form VLDL via bulk TG incorporation was induced by exogenous oleate, which could be blocked by MTP inhibitor BMS-197636 treatment. While particle enlargement was readily demonstrable by density ultracentrifugation for B64- and B72-VLDL, it was not obvious for B80- and B100-VLDL unless the VLDL was further resolved by cumulative rate flotation into VLDL(1) (S(f) > 100) and VLDL(2) (S(f) 20-100). BMS-197636 diminished B100 secretion in a dose-dependent manner (0.05-0.5 microM) and also blocked the particle enlargement from small to large B100-lipoproteins. These results yield a unified model that can accommodate VLDL assembly with all apoB forms, which invalidates our previous conclusion. To gain a better understanding of the MTP action, we examined the effect of BMS-197636 on lipid and apoB synthesis during VLDL assembly. While BMS-197636 (0.2 microM) entirely abolished B100-VLDL(1) assembly/secretion, it did not affect B100 translation or translocation across the microsomal membrane, nor did it affect TG synthesis and cell TG mass. However, BMS-197636 drastically decreased accumulation of [(3)H]glycerol-labeled TG and TG mass within microsomal lumen. The decreased TG accumulation was not a result of impaired B100-VLDL assembly, because in cells treated with brefeldin A (0.2 microgram/ml), the assembly of B100-VLDL was blocked yet lumenal TG accumulation was normal. Thus, MTP plays a role in facilitating accumulation of TG within microsomes, a prerequisite for the post-translational assembly of TG-enriched VLDL.  相似文献   

12.
The microsomal triglyceride transfer protein (MTP) is essential for the hepatic secretion of apolipoprotein (apo) B-containing lipoproteins. Previous studies have indicated that inhibition of MTP results in decreased apoB plasma levels and decreased hepatic triglyceride secretion. However, the metabolic effects of overexpression of MTP have not been investigated. We constructed a recombinant adenovirus expressing MTP (AdhMTP) and used it to assess the effects of hepatic overexpression of MTP in mice. Injection of AdhMTP into C57BL/6 mice resulted in a 3-fold increase in hepatic microsomal triglyceride transfer activity compared to mice injected with Adnull. On day 4 after virus injection, AdhMTP-injected mice had significantly elevated plasma TG levels as compared to control virus (Adnull)-injected mice. Hepatic TG secretion rates were significantly greater in AdhMTP-injected mice (184 +/- 12 mg/kg/h) compared with Adnull-injected mice (65 +/- 9 mg/kg/h, P < 0.001). In addition, hepatic very low density lipoprotein (VLDL) apoB secretion in the AdhMTP-injected group was 74% higher than in the control virus group. Hepatic secretion of apoB-48 and apoB-100 contributed equally to this increase.These results provide the first data that hepatic overexpression of MTP results in increased secretion of VLDL-triglycerides as well as VLDL-apoB in vivo. These results suggest that MTP is rate-limiting for VLDL apoB secretion in wild-type mice under basal chow-fed conditions.  相似文献   

13.
We previously demonstrated that the N-terminal 1000 amino acid residues of human apolipoprotein (apo) B (designated apoB:1000) are competent to fold into a three-sided lipovitellin-like lipid binding cavity to form the apoB "lipid pocket" without a structural requirement for microsomal triglyceride transfer protein (MTP). Our results established that this primordial apoB-containing particle is phospholipid-rich (Manchekar, M., Richardson, P. E., Forte, T. M., Datta, G., Segrest, J. P., and Dashti, N. (2004) J. Biol. Chem. 279, 39757-39766). In this study we have investigated the putative functional role of MTP in the initial lipidation of apoB:1000 in stable transformants of McA-RH7777 cells. Inhibition of MTP lipid transfer activity by 0.1 microm BMS-197636 and 5, 10, and 20 microm of BMS-200150 had no detectable effect on the synthesis, lipidation, and secretion of apoB:1000-containing particles. Under identical experimental conditions, the synthesis, lipidation, and secretion of endogenous apoB100-containing particles in HepG2 and parental untransfected McA-RH7777 cells were inhibited by 86-94%. BMS-200150 at 40 microm nearly abolished the secretion of endogenous apoB100-containing particles in HepG2 and parental McA-RH cells but caused only 15-20% inhibition in the secretion of apoB: 1000-containing particles. This modest decrease was attributable to the nonspecific effect of a high concentration of this compound on hepatic protein synthesis, as reflected in a similar (20-25%) reduction in albumin secretion. Suppression of MTP gene expression in stable transformants of McA-RH7777 cells by micro-interfering RNA led to 60-70% decrease in MTP mRNA and protein levels, but it had no detectable effect on the secretion of apoB:1000. Our results provide a compelling argument that the initial addition of phospholipids to apoB:1000 and initiation of apoB-containing lipoprotein assembly occur independently of MTP lipid transfer activity.  相似文献   

14.
Due to the absence of microsomal triglyceride transfer protein (MTP), Chinese hamster ovary (CHO) cells lack the ability to translocate apoB into the lumen of the endoplasmic reticulum, causing apoB to be rapidly degraded by an N-acetyl-leucyl-leucyl-norleucinal-inhibitable process. The goal of this study was to examine if expression of MTP, whose genetic deletion is responsible for the human recessive disorder abetalipoproteinemia, would recapitulate the lipoprotein assembly pathway in CHO cells. Unexpectedly, expression of MTP mRNA and protein in CHO cells did not allow apoB-containing lipoproteins to be assembled and secreted by CHO cells expressing apoB53. Although expression of MTP in cells allowed apoB to completely enter the endoplasmic reticulum, it was degraded by a proteolytic process that was inhibited by dithiothreitol (1 mM) and chloroquine (100 microM), but resistant to N-acetyl-leucyl-leucyl-norleucinal. In marked contrast, coexpression of the liver-specific gene product cholesterol 7alpha-hydroxylase with MTP resulted in levels of MTP lipid transfer activity that were similar to those in mouse liver and allowed intact apoB53 to be secreted as a lipoprotein particle. These data suggest that, although MTP-facilitated lipid transport is not required for apoB translocation, it is required for the secretion of apoB-containing lipoproteins. We propose that, in CHO cells, MTP plays two roles in the assembly and secretion of apoB-containing lipoproteins: 1) it acts as a chaperone that facilitates apoB53 translocation, and 2) its lipid transfer activity allows apoB-containing lipoproteins to be assembled and secreted. Our results suggest that the phenotype of the cell (e.g. expression of cholesterol 7alpha-hydroxylase by the liver) may profoundly influence the metabolic relationships determining how apoB is processed into lipoproteins and/or degraded.  相似文献   

15.
Despite numerous studies demonstrating that microsomal triglyceride transfer protein (MTP) activity is critical to apoB secretion, there is still controversy as to whether MTP directly facilitates the translocation of apoB across the membrane of the endoplasmic reticulum (ER) through either the recruitment of lipids and/or chaperone activity. In the present study, a specific inhibitor of MTP (BMS 197636) was utilized in HepG2 cells to investigate whether a direct relationship exists between the translocation of apoB across the ER membrane and the lipid-transferring activity of MTP. Inhibition of MTP (with 10 and 50 nmol/L of the inhibitor) did not significantly affect the translocation of newly synthesized apoB (P = 0.77) or the translocational efficiency of the steady-state apoB mass (P = 0.45), despite a 49% decrease in apoB secretion and increased proteosomal degradation. These results compared well with subcellular fractionation experiments which showed no significant change in the fraction of apoB accumulated in the lumen of isolated microsomes in MTP-treated cells (P = 0.35). In summary, MTP lipid transfer activity does not appear to influence translocational status of apoB, but its inhibition is associated with an increased susceptibility to proteasome-mediated degradation and reduced assembly and secretion of apoB lipoprotein particles.  相似文献   

16.
Very-low-density lipoprotein assembly and secretion   总被引:8,自引:0,他引:8  
The assembly of apolipoprotein B (apoB) into VLDL is broadly divided into two steps. The first involves transfer of lipid by the microsomal triglyceride transfer protein (MTP) to apoB during translation. The second involves fusion of apoB-containing precursor particles with triglyceride droplets to form mature VLDL. ApoB and MTP are homologs of the egg yolk storage protein, lipovitellin. Homodimerization surfaces in lipovitellin are reutilized in apoB and MTP to achieve apoB-MTP interactions necessary for first step assembly. Structural modeling predicts a small lipovitellin-like lipid binding cavity in MTP and a transient lipovitellin-like cavity in apoB important for nucleation of lipid sequestration. The formation of triglyceride droplets in the endoplasmic reticulum requires MTP however, their fusion with apoB may be MTP-independent. Second step assembly is modulated by phospholipase D and A2. Phospholipases may prime membrane transport steps required for second step fusion and/or channel phospholipids into a pathway for VLDL triglyceride production. The enzymology of VLDL triglyceride synthesis is still poorly understood; however, it appears that ACAT2 is the sole source of cholesterol esters for VLDL and chylomicron assembly. VLDL production is controlled primarily at the level of presecretory degradation. Recently, it was discovered that the LDL receptor modulates VLDL production through its interactions with nascent VLDL in the secretory pathway.  相似文献   

17.
The microsomal triglyceride transfer protein (MTP) is essential for the synthesis and secretion of apolipoprotein B (apoB)-containing lipoproteins. We investigated the role the MTP -493G/T gene polymorphism in determining the apoB-100 secretion pattern and LDL heterogeneity in healthy human subjects. Groups of carriers of the T and the G variants (n = 6 each) were recruited from a cohort of healthy 50-yr-old men. Kinetic studies were performed by endogenous [(2)H(3)]leucine labeling of apoB and subsequent quantification of the stable isotope incorporation. apoB production rates, metabolic conversions, and eliminations were calculated by multicompartmental modeling (SAAM-II). LDL subfraction distribution was analyzed in the entire cohort (n = 377). Carriers of the MTP -493T allele had lower plasma LDL apoB and lower concentration of large LDL particles [LDL-I: 136 +/- 57 (TT) vs. 175 +/- 55 (GG) mg/l, P < 0.01]. Kinetic modeling suggested that MTP -493T homozygotes had a 60% lower direct production rate of intermediate-density lipoprotein (IDL) plus LDL compared with homozygotes for the G allele (P < 0.05). No differences were seen in production rates of large and small VLDL, nor were there any differences in metabolic conversion or elimination rates of apoB between the genotype groups. This study shows that a polymorphism in the MTP gene affects the spectrum of endogenous apoB-containing lipoprotein particles produced in humans. Reduced direct production of LDL plus IDL appears to be related to lower plasma concentrations of large LDL particles.  相似文献   

18.
The PPARγ2 gene single nucleotide polymorphism (SNP) Pro12Ala has shown variable association with metabolic syndrome traits in healthy subjects. The RISCK Study investigated the effect of interaction between genotype and the ratio of polyunsaturated:saturated (P:S) fatty acid intake on plasma lipids in 367 white subjects (ages 30-70 years) at increased cardiometabolic risk. Interaction was determined after habitual diet at recruitment, at baseline after a 4-week high-SFA (HS) diet, and after a 24-week reference (HS), high-MUFA (HM), or low-fat (LF) diet. At recruitment, there were no significant associations between genotype and plasma lipids; however, P:S × genotype interaction influenced plasma total cholesterol (TC) (P = 0.02), LDL-cholesterol (LDL-C) (P = 0.002), and triglyceride (TG) (P = 0.02) concentrations. At P:S ratio ≤ 0.33, mean TC and LDL-C concentrations in Ala12 allele carriers were significantly higher than in noncarriers (respectively, P = 0.003; P = 0.0001). Significant trends in reduction of plasma TC (P = 0.02) and TG (P = 0.002) concentrations occurred with increasing P:S (respectively, ≤0.33 to >0.65; 0.34 to >0.65) in Ala12 allele carriers. There were no significant differences between carriers and noncarriers after the 4-week HS diet or 24-week interventions. Plasma TC and TG concentrations in PPARG Ala12 allele carriers decrease as P:S increases, but they are not dependent on a reduction in SFA intake.  相似文献   

19.
As 5-lipoxygenase (5-LO) is an emerging target in obesity and insulin resistance, we have investigated whether this arachidonate pathway is also implicated in the progression of obesity-related fatty liver disease. Our results show that 5-LO activity and 5-LO-derived product levels are significantly elevated in the liver of obese ob/ob mice with respect to wild-type controls. Treatment of ob/ob mice with a selective 5-LO inhibitor exerted a remarkable protection from hepatic steatosis as revealed by decreased oil red-O staining and reduced hepatic triglyceride (TG) concentrations. In addition, 5-LO inhibition in ob/ob mice downregulated genes involved in hepatic fatty acid uptake (i.e., L-FABP and FAT/CD36) and normalized peroxisome proliferator-activated receptor alpha (PPARalpha) and acyl-CoA oxidase expression, whereas the expression of lipogenic genes [i.e., fatty acid synthase (FASN) and SREBP-1c] remained unaltered. Furthermore, 5-LO inhibition restored hepatic microsomal TG transfer protein (MTP) activity in parallel with a stimulation of hepatic VLDL-TG and apoB secretion in ob/ob mice. Consistent with these findings, 5-LO products directly inhibited MTP activity and triggered cytosolic TG accumulation in CC-1 cells, a murine hepatocyte cell line. Taken together, these findings identify a novel steatogenic role for 5-LO in the liver through mechanisms involving the regulation of hepatic MTP activity and VLDL-TG and apoB secretion.  相似文献   

20.
The microsomal triglyceride transfer protein (MTP) is essential for the secretion of apolipoprotein B (apoB)48- and apoB100-containing lipoproteins in the intestine and liver, respectively. Loss of function mutations in MTP cause abetalipoproteinemia. Heterologous cells are used to evaluate the function of MTP in apoB secretion to avoid background MTP activity in liver and intestine-derived cells. However, these systems are not suitable to study the role of MTP in the secretion of apoB100-containing lipoproteins, as expression of a large apoB100 peptide using plasmids is difficult. Here, we report a new cell culture model amenable for studying the role of different MTP mutations on apoB100 secretion. The endogenous MTTP gene was ablated in human hepatoma Huh-7 cells using single guide RNA and RNA-guided clustered regularly interspaced short palindromic repeats-associated sequence 9 ribonucleoprotein complexes. We successfully established three different clones that did not express any detectable MTTP mRNA or MTP protein or activity. These cells were defective in secreting apoB-containing lipoproteins and accumulated lipids. Furthermore, we show that transfection of these cells with plasmids expressing human MTTP cDNA resulted in the expression of MTP protein, restoration of triglyceride transfer activity, and secretion of apoB100. Thus, these new cells can be valuable tools for studying structure-function of MTP, roles of different missense mutations in various lipid transfer activities of MTP, and their ability to support apoB100 secretion, compensatory changes associated with loss of MTP, and in the identification of novel proteins that may require MTP for their synthesis and secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号