首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis of the EGF receptor was examined in the epidermoid carcinoma cell line A431 and five novel cell lines from human squamous cell carcinomas possessing high numbers of EGF receptors. Newly synthesized EGF receptors were visualized by labeling with [35S]methionine and immunoprecipitation with a monoclonal anti-EGF receptor antibody. In addition, the processing of the EGF receptor and its intracellular transport was analyzed by distinguishing cell surface receptors from intracellular receptors and by treating cells with inhibitors such as tunicamycin, monensin and brefeldin A. These analyses revealed that in all the tumor cell lines the EGF receptor is synthesized as a glycosylated protein of Mr 160,000 which is converted to the receptor of Mr 170,000 through posttranslational glycosylation. The receptors of Mr 160,000 and 170,000 appeared to possess high mannose type oligosaccharide chains because endoglycosidase H treatment reduced their molecular weights by approximately 30,000. A431 was the only tumor cell line studied that secreted the truncated EGF receptor of Mr 110,000. In A431 cells, the truncated EGF receptor was generated from a protein of Mr 60,000 through tunicamycin- and monensin-sensitive glycosylation. A431 cells treated with monensin secreted the truncated receptor as a Mr 95,000 form.  相似文献   

2.
M D Lane  G Ronnett  L J Slieker  R A Kohanski  T L Olson 《Biochimie》1985,67(10-11):1069-1080
We have investigated the role of glycosylation on the post-translational processing of the insulin, and EGF proreceptor polypeptides. Following translation of the insulin proreceptor, by 3T3-L1 adipocytes, about 1.5 h are required for its conversion into active receptor; an additional 1.5 h are needed for the active receptor to reach the plasma membrane. During this 3-hour period the proreceptor undergoes a complex series of processing events, glycosylation being an essential processing step. Thus, treatment of 3T3-L1 adipocytes with tunicamycin caused the loss of cellular insulin binding activity and the accumulation of an inactive aglyco-proreceptor. Similarly, it was demonstrated in human A431 epidermoid carcinoma cells that the initial EGF-proreceptor (160 kDa) translation product undergoes a slow (t 1/2 = 30 min) processing step by which ligand (EGF) binding activity was acquired. It was shown that N-linked core oligosaccharide addition is essential for this critical processing step and the acquisition of EGF binding activity. This was found not to require the conversion of high mannose chains to complex chains which have been capped with fucose and sialic acid. Possible explanations for this activation in terms of translocation of intermediates and/or formation of disulfide bonds are discussed. To investigate post-translational processing of normal insulin proreceptor and the role of glycosylation in active receptor formation, metabolic labeling experiments were conducted. The first 35S-methionine-labeled intermediate detected is a 190 kDa polypeptide (proreceptor) which is rapidly (t 1/2 = 15 min) processed into a 210 kDa species. Both polypeptides contain N-linked core oligosaccharide chains, but in the latter case these chains appear to contain terminal N-acetylglucosamine. The 210 kDa precursor is converted slowly (t 1/2 = 2 h) by proteolytic processing into a 125 kDa (alpha') and 83 kDa (beta') species. Immediately prior to insertion into the plasma membrane, 3 h after its synthesis, the alpha' and beta' precursors are converted to mature receptor comprised of alpha-(135 kDa) and beta-(95 kDa) subunits. The 125 kDa alpha'- and 83 kDa beta'-subunit precursors are endoglycosidase H-sensitive and their oligosaccharide chains do not contain terminal sialic acid. Just prior to insertion into the plasma membrane the alpha' and beta' precursors are sialylated, apparently in the Golgi apparatus, giving rise to the 135 kDa alpha and 95 kDa beta receptor subunits and become Endo H-resistant and neuraminidase-sensitive. A proposed sequence of post-translational processing events for the insulin proreceptor is shown in Figure 10.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Epidermal growth factor (EGF) receptor biosynthesis was examined in an oral squamous cell carcinoma line, NA, which overproduces the receptor to an even greater extent than the widely studied A431 cells. The EGF receptor of NA cells synthesized in the presence of tunicamycin had an apparent molecular weight of 130,000. The nascent protein in untreated cells was cotranslationally glycosylated to Mr 160,000 and further processed to Mr 170,000. The endo-beta-N-acetylglucosaminidase H (Endo H) digestion analysis revealed the presence of high mannose type oligosaccharide on the Mr 170,000 mature receptor. We extended the analysis by correlating the biosynthesis with the acquisition of binding activity. The unglycosylated Mr 130,000 receptor and the Mr 160,000 receptor seen after pulse-labeling had no EGF binding activity, whereas the Mr 160,000 receptor seen after chase-incubation and the Mr 170,000 receptor had binding activity. Thus, not only glycosylation but also some oligosaccharide processing is apparently necessary for the EGF binding. Treatment with processing inhibitors, such as monensin, swainsonine and 1-deoxynojirimycin, affected neither receptor transport to the plasma membrane nor binding activity. Inhibition by 1-deoxynojirimycin is thought to be incomplete since the surface receptor in treated cells had the same molecular weight as that in control cells. An Mr 160,000 receptor without binding activity accumulated in the intracellular fraction in the presence of brefeldin A, an inhibitor of intracellular transport. Thus, the EGF binding activity is thought to be acquired after the brefeldin A-sensitive process but prior to the swainsonine-sensitive mannose removal in NA cells.  相似文献   

4.
Processing of the asparagine-linked oligosaccharides at the known glycosylation sites on the mu-chain of IgM secreted by MOPC 104E murine plasmacytoma cells was investigated. Oligosaccharides present on intracellular mu-chain precursors were of the high mannose type, remaining susceptible to endo-beta-N-acetylglucosaminidase H. However, only 26% of the radioactivity was released from [3H]mannose-labeled secreted IgM glycopeptides, consistent with the presence of high mannose-type and complex-type oligosaccharides on the mature mu-chain. [3H]Mannose-labeled cyanogen bromide glycopeptides derived from mu-chains of secreted IgM were isolated and analyzed to identify the glycopeptide containing the high mannose-type oligosaccharide from those containing complex-type structures. [3H]Mannose-labeled intracellular mu-chain cyanogen bromide glycopeptides corresponding to those from secreted IgM were isolated also, and the time courses of oligosaccharide processing at the individual glycosylation sites were determined. The major oligosaccharides on all intracellular mu-chain glycopeptides after 20 min of pulse labeling with [3H]mannose were identified as Man8GlcNAc2, Man9GlcNAc2, and Glc1Man9GlcNAc2. Processing of the oligosaccharide destined to become the high mannose-type structure on the mature protein was rapid. After 30 min of chase incubation the predominant structures of this oligosaccharide were Man5GlcNAc2 and Man6GlcNAc2 which were also identified on the high mannose-type oligosaccharide of the secreted mu-chain. In contrast, processing of oligosaccharides destined to become complex type was considerably slower. Even after 180 min of chase incubation, Man7GlcNAc2 and Man8GlcNAc2 were the predominant structures at some of these glycosylation sites. The isomeric structures of Man8GlcNAc2 obtained from all of the glycosylation sites were identical. Thus, the different rates of processing were not the result of a different sequence of alpha 1,2-mannose removal.  相似文献   

5.
The polyprotein precursor to the envelope glycoproteins of mouse mammary tumor virus was investigated by using subcellular fractionation procedures, pactomycin mapping techniques, tunicamycin inhibition of glycosylation, and endo-beta-N-acetyl glucosaminidase H-catalyzed removal of glycosylated residues in order to characterize the biosynthesis and processing of the precursor. The results suggest that the precursor (Pr73env) is synthesized on the rough endoplasmic reticulum as a transmembrane protein, with the carboxyl terminus remaining on the cytoplasmic side. The apoprotein as an estimated molecular weight of 60,000 and acquires five core oligosaccharide units during synthesis. Cleavage of the precursor precedes the secondary glycosylation steps and therefore probably occurs before transport to the plasma membrane. However, a minor population of Pr73env containing complex oligosaccharides was also found in the plasma membrane. The order of the glycoproteins in the precursor, as determined by pactomycin mapping, in NH2-gp52-gp36-COOH.  相似文献   

6.
We surveyed published reports on about 50 glycoproteins whose amino acid sequence, glycosylation sites, and type of glycosylation at a particular site have been established. We note that high-mannose substances were rarely found at the N-terminal side of a previously glycosylated complex site. There was a very definite distribution of complex sites about the N-terminal region. Furthermore, secreted glycoproteins usually contained only complex oligosaccharides whereas membrane proteins contained both types. We suggest that the position of the glycosylation site with respect to the N-terminus affects the extent of oligosaccharide processing and subsequent presentation of complex or high-mannose structures in the mature glycoprotein. This review relates glycosylation type to its position in the known sequence of given proteins and discusses these observations in light of known glycosylation processing reactions.  相似文献   

7.
Subcellular localization of the EGF receptor maturation process   总被引:2,自引:0,他引:2  
The glycosylation and the processing of the epidermal growth factor (EGF) receptor are suggested to play a crucial role(s) in the activation of ligand binding activity. To examine whether the receptor acquires EGF binding activity in the endoplasmic reticulum (ER) or in the Golgi complex, we carried out parallel kinetic analysis of the EGF binding activity and the intracellular transport of the newly synthesized receptor by immunoprecipitation with the anti-EGF receptor antibody B4G7 using the EGF receptor hyperproducing cell line NA. The kinetic analysis revealed that a receptor capable of binding EGF appeared after 30 to 60 min labeling with [35S]methionine. Pulse-chase experiments also indicated that the receptor capable of binding EGF appeared after a 30-min pulse with a 30-min chase. Subcellular fractionation analysis indicated that the newly synthesized receptor was present in the Golgi complex after labeling with [35S]methionine for 30 min. After a 30-min chase, the Mr 170K receptor appeared in the Golgi complex and plasma membrane. Thus, these results together indicated that after a 30-min pulse incubation a fraction of the EGF receptors have been transported from the ER to the Golgi complex; however, the receptor is unable to bind EGF. Although the EGF receptor appeared on the cell surface after a 30-min pulse with a 30-min chase, only half of the receptors are capable of binding EGF. Therefore, the EGF receptor acquires ligand binding activity at a late stage of the maturation process, most likely in the Golgi complex.  相似文献   

8.
The first steps of the biosynthetic pathway of high molecular weight polylactosamine-type glycopeptides from rat Zajdela hepatoma cells were studied by pulse-chase experiments, biochemical analysis and by inhibition of N-glycosylation. It is clear that this process involves firstly the transfer of a lipid-linked high-mannose oligosaccharide precursor to a protein moiety in a similar way to that of N-linked glycopeptides of a more common size range according to the classical 'cycle of dolichol'. In the presence of enzymes which are inhibitors of the processing of high-mannose oligosaccharide chains, this class of oligosaccharides was considerably increased, whereas polylactosamine chains and lower complex N-linked glycopeptides were concomitantly decreased in the same kinetics and the same ratio. As expected in the presence of N-methyldeoxynojirimycin, which is an alpha-glucosidase inhibitor, high-mannose oligosaccharides remained glycosylated and are mostly of the Glc1-3Man9GlcNAc type. In the presence of swainsonine, which is an alpha-mannosidase (EC 3.2.1.24) inhibitor, these chains were devoid of glucose residues. In addition, some chains displayed hybrid structures. It appears, therefore, that the first steps of the biosynthesis of polylactosamine-type and N-linked oligosaccharides of a more common size range proceed similarly and that differences between their biosynthetic pathways occur during the elongation phase, which leads to their final respective structures. Glycopeptides prepared from the cell surface by mild trypsin treatment as well as from entire cells, previously treated or not by processing inhibitors, display the same gel filtration patterns indicating that modifications in protein glycosylation do not prevent glycoprotein insertion into the cell membrane.  相似文献   

9.
Regulation of cell proliferation by epidermal growth factor   总被引:27,自引:0,他引:27  
Epidermal Growth Factor (EGF) is a 6045 dalton polypeptide which stimulates the proliferation of various cell types in vitro and in vivo. EGF binds to diffusely distributed membrane receptors which rapidly cluster primarily on coated pits areas on the plasma membrane. Subsequently, the EGF-receptor complexes are endocytosed and degraded by lysosomal enzymes. The lateral diffusion coefficient (D) of EGF-receptor complexes on cultured cells increases gradually from D = 2.8 X 10(-10) cm2/sec at 5 degrees C to 8.5 X 10(-10) cm2/sec at 37 degrees C. In the same range of temperature the rotational correlation times change from 25 to 50 microseconds to approximately 350 microseconds. Hence, at 4 degrees C, the occupied EGF receptors translate and rotate rapidly in the plane of the membrane. At 37 degrees C, EGF receptors form microclusters composed of 10 to 50 molecules. Moreover, it is concluded that both at 4 degrees C and 37 degrees C lateral diffusion of the occupied receptors is not the rate determining step for either receptor clustering or internalization. EGF receptor is a 150,000 to 170,000 dalton glycoprotein. The receptor is in close proximity to an EGF-sensitive, cAMP-independent, tyrosine-specific protein kinase which also phosphorylates the receptor molecules itself. The EGF sensitive kinase is similar to the kinase activity which is associated with certain RNA tumor viruses. The fact that the non-mitogenic cyanogen-bromide cleaved EGF is as potent as native EGF in stimulating phosphorylation suggests that EGF-induced, protein phosphorylation is a necessary but insufficient signal for the induction of DNA synthesis by EGF. EGF receptor serves also as the binding site for Transforming Growth Factors (TGF) which compete with EGF and induce anchorage-independent growth of normal cells in soft agar. Tumor promoters such as phorbol ester effect the binding of EGF to its membrane receptors and its ability to stimulate DNA synthesis. EGF itself has also some tumor promoting activity. Hence, the membrane receptor for EGF seems to participate in the regulation of normal and neoplastic growth. Monoclonal antibodies against EGF receptor (IgM) induce various early and delayed effects of EGF, while their monovalent Fab' fragments are devoid of biological activity. These observations support the notions that EGF receptor rather than EGF itself is the active moiety and that the role of the hormone is to perturb the receptor in the appropriate way, probably by inducing the microaggregation of EGF receptors.  相似文献   

10.
Quiescent thymocytes, mitogen-stimulated thymocytes and acute-leukaemic lymphoblasts provide a model for the study of protein glycosylation in quiescent cells, mitotically active non-malignant and malignant cells respectively. The biosynthesis of both complex and high-mannose-type oligosaccharides was monitored by metabolic labelling with [6-3]fucose and [2-3H]mannose. Bio-Gel P6 elution profiles of [6-3H]fucose-labelled glycopeptides showed that quiescent thymocytes and stimulated thymocytes synthesized qualitatively and quantitatively similar glycopeptides; however, higher-molecular-weight glycopeptides were synthesized by the acute-leukaemic lymphoblasts. The amount of [2(-3)H]mannose incorporated into glycopeptide by quiescent thymocytes was less than 10% of that incorporated by stimulated thymocytes. The Bio-Gel P6 elution profile of [2(-3)H]mannose-labelled glycopeptides from acute leukaemic lymphoblasts was qualitatively similar to that of stimulated thymocytes, with about 40% of the radioactivity incorporated into one glycopeptide peak. This glycopeptide was characterized by Bio-Gel P6 and concanavalin A affinity chromatography, radioactive-sugar analysis, sensitivity to alpha-mannosidase and endoglycosidase H and resistance to beta-glucosaminidase as containing a high-mannose oligosaccharide, possible of Man7-8GlcNAc2 structure. Pulse/chase experiments indicated that this high-mannose oligosaccharide was an end product and not a biosynthetic intermediate. It is concluded that higher-molecular-weight fucose-labelled glycopeptides are characteristic of the malignant cell type, and the synthesis of high-mannose oligosaccharide, Man7-8GlcNAc2, in stimulated thymocytes and acute-leukaemic lymphoblasts is associated with mitotically active cells.  相似文献   

11.
Based on subcellular fractionation data, the following maturation pathways were proposed for the Newcastle disease virus glycoproteins. During or shortly after synthesis in rough endoplasmic reticulum, hemagglutinin-neuraminidase (HN) and fusion (F0) glycoproteins underwent dolichol pyrophosphate-mediated glycosylation, and HN assumed a partially trypsin-resistant conformation. HN began to associate into disulfide-linked dimers in rough endoplasmic reticulum, and at least one of its oligosaccharide side chains was processed to a complex form en route to the cell surface. During migration in intracellular membranes, F0 was proteolytically cleaved to F1.2. Neither HN nor F1,2 required oligosaccharide side chains for migration to plasma membranes, and cleavage of F0 also occurred without glycosylation. Virion- and plasma membrane-associated HN contained both complex and high-mannose oligosaccharide chains on the same molecule, and F1,2 contained at least high-mannose forms. Several of the properties of HN were notable for a viral glycoprotein. The oligosaccharide side chains of HN were modified very slowly in chick cells, whereas those of the G glycoprotein of vesicular stomatitis virus were rapidly processed to a complex form. Therefore, their different rates of migration and carbohydrate processing were intrinsic properties of these glycoproteins. Consistent with its slow maturation, the HN glycopolypeptide accumulated to high levels in intracellular membranes as well as in plasma membranes. Intracellular HN contained immature oligosaccharide side chains, suggesting that it accumulated in the pre-Golgi/Golgi segment of the maturation pathway. The major site of accumulation of mature HN with neuraminidase activity was the plasma membrane.  相似文献   

12.
The human epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein having 11 potential N-glycosylation sites in its extracellular domain. N-Glycosylation is needed for proper membrane insertion, EGF binding and receptor functioning. The human epidermoid carcinoma A431 cell line secretes a soluble 105 kDa glycoprotein (sEGFR) that represents the extracellular domain of the membrane-bound form, and its glycosylation pattern has been investigated. After liberation of the oligosaccharides from sEGFR with PNGase F, the glycans were fractionated along different routes, including Concanavalin A affinity chromatography, anion-exchange chromatography, HPLC and high-pH anion-exchange chromatography. The oligosaccharide fractions were characterized by 500- and 600-MHz 1H-NMR spectroscopy and mass spectrometry (FAB, ESI, and MALDI-TOF). The oligomannose-type glycans range from Man5GlcNAc2 to Man8GlcNAc2 and account for 17% of the total carbohydrate moiety. Furthermore, di-, tri'- and tetraantennary complex-type structures are present, both neutral and (alpha2-3)-sialylated (up to tetrasialo), comprising 24 and 59%, respectively, of the total carbohydrate moiety. In this study, 32 new complex-type glycans are characterized containing the Le(x), Le(Y), and sialyl-Le(x) determinants, the bloodgroup A and H antigens, as well as the ALe(Y) determinant. This first comprehensive glycosylation study on a human nonrecombinant receptor shows the immense heterogeneity of the glycosylation of sEGFR.  相似文献   

13.
Chen C  Colley KJ 《Glycobiology》2000,10(5):531-583
The influence of N-linked glycosylation on the activity and trafficking of membrane associated and soluble forms of the STtyr isoform of the ST6Gal I has been evaluated. We have demonstrated that the enzyme is glycosylated on Asn 146 and Asn 158 and that glycosylation is not required for the endoplasmic reticulum to Golgi transport of the membrane-associated form of the STtyr isoform. In addition, N-linked glycosylation may stabilize the protein but is not absolutely required for catalytic activity in vivo. In contrast, soluble forms of the protein consisting of amino acids 64-403, 89-403, and 97-403 are efficiently secreted and active in their fully glycosylated forms, but retained in the endoplasmic reticulum and inactive in their unglycosylated forms. These results suggest that membrane associated and soluble forms of the STtyr protein have different requirements for N-linked glycosylation. Elimination of the oligosaccharide attached to Asn 158 in the full length STtyr single and double glycosylation mutants generates proteins that are not cleaved and secreted but stably localized in the Golgi, like the STcys isoform of the ST6Gal I. This stable Golgi localization is correlated with the observation that these two mutants are active in in vivo assays but inactive in in vitro assays of membrane lysates. We predict that removal of N-linked oligosaccharides leads to an increased ability of the STtyr protein to self-associate or oligomerize which subsequently allows more stable retention in the Golgi and increased aggregation and inactivity when membranes are lysed in the in vitro activity assays.  相似文献   

14.
Rat hepatic lipase is a glycoprotein bearing two N-linked oligosaccharide chains. The importance of glycosylation in the secretion of hepatic lipase was studied using freshly isolated rat hepatocytes. Various inhibitors of oligosaccharide synthesis and processing were used at concentrations that selectively interfere with protein glycosylation. Secretion of hepatic lipase activity was abolished by tunicamycin, castanospermine, and N-methyldeoxynojirimycin. No evidence was found by ELISA or Western blotting for secretion of inactive protein. Inhibition of secretion became apparent after a 30-min lag, corresponding to the time of intracellular transport of pre-existing protein. Simultaneously, intracellular hepatic lipase activity ws depleted. Secretion of hepatic lipase protein and activity was not affected by deoxymannojirimycin and swainsonine. Upon SDS-polyacrylamide gel electrophoresis, hepatic lipase secretion by deoxymannojirimycin- or swainsonine-treated cells showed an apparent Mr of 53 kDa and 55 kDa, respectively, which was distinct from hepatic lipase secreted by untreated cells (Mr = 58 kDa). We conclude that glycosylation and subsequent oligosaccharide processing play a permissive role in the secretion of hepatic lipase. As secretion is prevented by the glucosidase inhibitors castanospermine and N-methyldeoxynojirimycin, but not by inhibitors of subsequent oligosaccharide trimming, the removal of glucose residues from the high-mannose oligosaccharide intermediate in the rough endoplasmic reticulum appears the determining step.  相似文献   

15.
The post-translational processing and maturation of the receptor for IgE (Fc epsilon R) on murine hybridoma B cells were studied to determine the carbohydrate content and the importance of processing events in cell surface expression and ligand (IgE) binding ability. Endo and exoglycosidase treatment demonstrated that the mature receptor is composed of two to three complex-type N-linked oligosaccharides and contains sialic acid. Pulse-chase experiments indicated that the receptor is synthesized as a 44,000 dalton precursor that begins to be processed by 1 hr to the mature 49,000 dalton form, and the latter is expressed at the cell surface by 2 hr. It was determined that the processing included the conversion of N-linked oligosaccharides to the complex type as well as an additional processing event, because in the presence of tunicamycin, the receptor is synthesized as a 36,000 dalton precursor that is processed to a 38,000 dalton species. Analysis of the effects of tunicamycin treatment and endo F digestion on soluble Fc epsilon R isolated from cell supernatants demonstrated the existence of several m.w. species of Fc epsilon R fragments, and indicated that only the higher m.w. fragments were N-glycosylated. The use of several inhibitors of the N-linked carbohydrate processing pathway demonstrated that the addition of core N-linked side-chains, but not their processing to the complex type, is required for cell surface expression of Fc epsilon R. Also, processing of N-linked carbohydrate is not required for ligand binding activity. Finally, IgE affinity chromatography indicated that the 49,000 and 38,000 dalton (tunicamycin) Fc epsilon R bind IgE more effectively than their precursor forms, 44,000 and 36,000 daltons, respectively, indicating that a processing event independent of N-linked glycosylation is necessary for optimal ligand binding activity.  相似文献   

16.
Reconstitution experiments were carried out with particles obtained from lobster nerve plasma membrane preparations by detergent treatment, differential centrifugation and ammonium sulfate fractionation. The NA channel activity of the three fractions obtained, which have different amounts of the same peptides present in the original membrane, appears related to their content in a large component which does not enter the 9% polyacrylamide gel and in peptides with 220,000 and 110,000 apparent molecular weight. Other reconstitution experiments made with two fractions obtained by detergent treatment, differential centrifugation and gel exclusion chromatography, revealed that the Na channel active fraction contains the material which does not enter the gel in addition to the 220,000 and 110,000 molecular weight peptides. The other fraction was inactive and does not contain those components. The 220,000 dalton peptide has a molecular weight similar to those determined for the tetrodotoxin-saxitoxin receptor and the scorpion toxin receptor of the Na channel. Whether any of the other peptides is a Na channel constituent is unknown at present.  相似文献   

17.
Several discrete events were resolved in the processing of vitellogenin in Blattella germanica. Using tunicamycin to inhibit the synthesis of high-mannose oligosaccharide, a high molecular weight pro-vitellogenin peptide (apo-proVG, Mr 215,000) was identified in fat body. Dosages of tunicamycin which inhibited glycosylation of vitellogenin by 98% inhibited its synthesis by as much as 59%, yet led to an intracellular accumulation of apo-proVG. Reversibility and dose dependency of these effects on vitellogenin synthesis, glycosylation, proteolytic processing, and secretion were demonstrated. In control insects, glycosylation of apo-proVG yielded a Mr 240,000 pro-vitellogenin peptide (proVG). FITC-Concanavalin A bound to purified proVG but not to apo-proVG, thus confirming an absence of high-mannose oligosaccharide in the apo-protein. Following its glycosylation, proVG was processed rapidly in fat body to Mr 160,000 (VG160) and Mr 102,000 (VG102) peptides which subsequently were secreted into hemolymph. After uptake into developing oocytes, the VG160 peptide was processed further prior to chorionation, yielding subunits of Mr 95,000 and 50,000. Uniqueness of the peptides of mature vitellin (Mr 102,000, 95,000, and 50,000) was indicated by comparison of the CNBr fragments of each purified subunit. Staining of CNBr fragments with FITC-Concanavalin A also indicated that high-mannose oligosaccharides are attached at one or more sites within each vitellin subunit. Resolution of the substructure of this insect vitellin and identification of events involved in the processing and secretion of its fat body apo-protein provide a basis for further study of the assembly and transport of vitellogenin, its packaging in eggs, and utilization during embryogenesis.  相似文献   

18.
Zhen Y  Caprioli RM  Staros JV 《Biochemistry》2003,42(18):5478-5492
The epidermal growth factor receptor is a transmembrane glycoprotein that mediates the cellular responses to epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha). In this study of the human EGF receptor naturally expressed in A431 cells, the glycosylation sites of the full-length, membrane-bound receptor and of a secreted form of the receptor were characterized by mass spectrometry. Our data show that the naturally expressed human EGF receptor is fully glycosylated on eight of the 11 canonical sites; two of the sites are not glycosylated, and one is partially glycosylated, a pattern of site-usage similar but not identical to those reported for the recombinant human EGF receptor heterologously expressed in Chinese hamster ovary cells. We also confirm the partial glycosylation of an atypical NNC site first identified in the receptor expressed in Chinese hamster ovary cells. We show that an additional canonical site in the secreted form of the receptor is fully glycosylated. While the pattern of glycosylation is the same for the sites shared by the full-length and the secreted forms of the receptor, the oligosaccharides of the full-length receptor are more extensively processed. Finally, we provide evidence that in addition to the known secreted form of the receptor, a proteolytic cleavage product of the receptor corresponding to the full extracytoplasmic, ligand-binding domain is present in the conditioned medium.  相似文献   

19.
Desmosomes are composed of two morphologically and biochemically distinct domains, a cytoplasmic plaque and membrane core. We have initiated a study of the synthesis and assembly of these domains in Madin-Darby canine kidney (MDCK) epithelial cells to understand the mechanisms involved in the formation of desmosomes. Previously, we reported the kinetics of assembly of two components of the cytoplasmic plaque domain, Desmoplakin I/II (Pasdar, M., and W. J. Nelson. 1988. J. Cell Biol. 106:677-685 and 106:687-699. We have now extended this analysis to include a major glycoprotein component of the membrane core domain, Desmoglein I (DGI; Mr = 150,000). Using metabolic labeling and inhibitors of glycoprotein processing and intracellular transport, we show that DGI biosynthesis is a sequential process with defined stages. In the absence of cell-cell contact, DGI enters a Triton X-100 soluble pool and is core glycosylated. The soluble DGI is then transported to the Golgi complex where it is first complex glycosylated and then titrated into an insoluble pool. The insoluble pool of DGI is subsequently transported to the plasma membrane and is degraded rapidly (t1/2 less than 4 h). Although this biosynthetic pathway occurs independently of cell-cell contact, induction of cell-cell contact results in dramatic increases in the efficiency and rate of titration of DGI from the soluble to the insoluble pool, and its transport to the plasma membrane where DGI becomes metabolically stable (t1/2 greater than 24 h). Taken together with our previous study of DPI/II, we conclude that newly synthesized components of the cytoplasmic plaque and membrane core domains are processed and assembled with different kinetics indicating that, at least initially, each domain is assembled separately in the cell. However, upon induction of cell-cell contact there is a rapid titration of both components into an insoluble and metabolically stable pool at the plasma membrane that is concurrent with desmosome assembly.  相似文献   

20.
NIH 3T3 cells were transfected with cDNA corresponding to human kidney prepro-epidermal growth factor (preproEGF) under control of the inducible mouse metallothionein promoter. The synthesis of recombinant human EGF precursor by these cells has provided us with a model system for analysis of the structure and activity of this precursor. In transfected cells, the precursor was present as an intrinsic 170-kilodalton membrane protein as well as a soluble protein in the extracellular medium; both forms were N glycosylated. Glycosylation of the EGF precursor was determined by (i) the direct incorporation of [3H]mannose and [3H]glucosamine, (ii) metabolic labeling in the presence or absence of glycosylation inhibitors, (iii) enzymatic cleavage of the precursor by N-glycanase or endoglycosidase II, and (iv) lectin chromatography. Recombinant human preproEGF was purified by affinity chromatography, using wheat germ lectin and antibodies to human EGF. The intact precursor was biologically active. Purified preparations of preproEGF (i) competed with 125I-labeled EGF for binding to the EGF receptor in intact fibroblast cells, (ii) activated the intrinsic tyrosine kinase activity of the EGF receptor in membrane preparations, and (iii) sustained the growth of a mouse keratinocyte cell line that is dependent on EGF for growth. These results suggest that proteolytic processing of the precursor may not be essential for its biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号