首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biogeography of Central America is viewed as a classic case study in understanding the impact of vicariant events on patterns of biotic dispersal. While many biogeographers have focused on community composition and geographical limits of species at broad scales across Central America, much less work has focused on post-colonization diversification patterns at finer scales. The livebearing freshwater fish Xenophallus umbratilis presents an ideal system for determining the impact of recent Earth history events on biodiversity in northern Costa Rica. Here, we test the hypotheses that marine inundation of the San Carlos and northern Limón basins during the Pliocene and Pleistocene has caused genetic fragmentation among X. umbratilis populations, despite contemporary freshwater connections. To test this idea, we collected mitochondrial (cytochrome b ) sequence data in 162 individuals taken from 27 localities across northern Costa Rica. We employed a variety of analytical approaches, including: maximum parsimony and maximum likelihood, analysis of molecular variance, and demographic analysis of population size through time. We found four major clades within X. umbratilis , each geographically isolated with no shared haplotypes across drainages. Oddly, clades that occupy adjacent drainages are not always sister taxa in the phylogeny, suggesting that colonization in this species is more complex than a simple model of isolation by distance. All our results are consistent with the hypothesis that changes in sea level associated with glacial eustatic cycles have had an important effect in shaping diversification patterns in this species.  相似文献   

2.
Geckos in the Western Hemisphere provide an excellent model to study faunal assembly at a continental scale. We generated a time-calibrated phylogeny, including exemplars of all New World gecko genera, to produce a biogeographical scenario for the New World geckos. Patterns of New World gecko origins are consistent with almost every biogeographical scenario utilized by a terrestrial vertebrate with different New World lineages showing evidence of vicariance, dispersal via temporary land bridge, overseas dispersal or anthropogenic introductions. We also recovered a strong relationship between clade age and species diversity, with older New World lineages having more species than more recently arrived lineages. Our data provide the first phylogenetic hypothesis for all New World geckos and highlight the intricate origins and ongoing organization of continental faunas. The phylogenetic and biogeographical hypotheses presented here provide an historical framework to further pursue research on the diversification and assembly of the New World herpetofauna.  相似文献   

3.
    
Aim To reconstruct the biogeographical history of New World emballonurid bats (tribe Diclidurini). Although bats are the second most species‐rich order of mammals, they have not contributed substantially to our understanding of the historical biogeography of mammals in the Neotropics because of a poor fossil record. In addition, being the only group of mammals that fly, bats typically have large distributions with relatively few species endemic to restricted areas that are amenable to vicariant biogeographical approaches. Location Central and South America. Methods Phylogenetic analysis for comparing trees (PACT) is a new algorithm that incorporates all spatial information from taxon area cladograms into a general area cladogram. There were nine biogeographical areas identified in Central and South America for New World emballonurid bats. Molecular dating was used to incorporate the temporal aspect of historical biogeography. This method was compared with dispersal–vicariance analysis (DIVA), which assumes vicariance as the default mode of speciation. Results Of the 45 speciation events in a fully resolved phylogeny, eight that were hypothesized by DIVA as vicariance were considered by PACT as two peripheral isolations and six within‐area events. DIVA was less parsimonious because it required six more post‐speciation dispersal events in addition to the 73 hypothesized by PACT. DIVA reconstructed a widely distributed ancestor, suggesting that most dispersal events occurred earlier, whereas the ancestral area for PACT based on character optimization was the Northern Amazon, suggesting that dispersal events were more recent phenomena. Main conclusions The general area cladogram from PACT indicated that within‐area events, and not vicariance, provide the major mode of speciation for New World emballonurid bats. There was no biological evidence supporting or rejecting sympatric speciation in New World emballonurid bats. However, the geological history, combined with fluctuations in temperature and sea level, suggested within‐area speciation in a changing and heterogeneous environment in the Northern Amazon during the Miocene. This scenario is similar to the taxon‐pulse hypothesis of biotic diversification, which posits repeated episodes of range expansions and contractions from a stable core area such as the Guiana Shield within the Northern Amazon.  相似文献   

4.
    
Aim To assess the correspondence between current avian distributions in the lowlands of northern South America with respect to the hypothesized importance of sea level rise and other events over the past 15 million years on speciation. Location Tropical lowlands of north‐western South America. Methods To establish which bird taxa may have originated in each area of endemism, I examined the ranges of all bird species occurring in the Pacific and the Caribbean lowlands. To determine land and sea distribution during a sea level rise of 100 m in north‐western South America and eastern Central America, I traced the 100 m contour line from the Geoatlas of Georama and the Global 30‐Arc‐Second Elevation Data (GTOPO30) produced by the US Geological Survey. Results During a sea level rise of ~100 m, marine incursions would have occurred from the Caribbean Sea and the Pacific Ocean. Several areas of tropical forest and dry/arid vegetation would have been isolated, currently known as the Darién, Chocó, Nechí, Catatumbo, Tumbesian and Guajiran areas of animal and plant endemism. Main conclusions A large part of the high diversity of forest and nonforest birds and other animals and plants in the Pacific rain forest and the Caribbean woodland likely arose as the result of sea level rises, dispersal and other geological and climatic events.  相似文献   

5.
    
New World primates comprise a diverse group of neotropical mammals that suddenly appeared in the Late Oligocene deposits of South America at around 26 million years ago (MYA). Platyrrhines seem to have separated from Old World anthropoids ca. 35 MYA, and their subsequent diversfication is not well documented in the fossil record. Therefore, molecular clock studies were conducted to unveil the temporal scenario for the evolution of the group. In this study, divergence times of all splits within platyrrhines until the generic level were investigated, using two different gene data sets under relaxed molecular clocks. Special attention was paid to the basal diversification of living platyrrhines and to the basal split of the modern Cebidae family, since these nodes were reported to be phylogenetically difficult to resolve. The results showed that analyses from various genomic regions are similar to estimates obtained by early single-gene studies. Living New World primates are descendants of ancestors that lived in the Early Miocene, at around 20 MYA, and modern Cebidae and Pitheciidae appeared ca. 16.9 and 15.6 MYA, respectively. The last common ancestor of living Atelidae is 12.4 million years old, making this clade the youngest New World primate family; at approximately the same time, modern Callitrichinae was evolving (11.8 MYA). The gap between the Platyrrhini/Catarrhini separation and the last common ancestor of living Platyrrhini may be as big as 20 million years. Paleontological and geoclimatological evidence corroborates that the sudden appearance of modern families may be a consequence of environmental changes during the Miocene.  相似文献   

6.
7.
KNAPP, S., 1991. A revision of the Solatium sessile species (sectio Geminata pro parte : Solanaceae ). The taxonomy of the Solanum sessile species group (a part of the large and unwieldy section Geminata) is reviewed, based on detailed field and herbarium studies. Members of the group are found from Mexico to Bolivia in a variety of habitats. Ten species are recognized: S. obovalifolium, S. sessile, S. monadelphum, S. turgidum, S. triste, S. chlamydogynum, S. rovirosanum, S. palmillae, S. oppositifolium and conferliseriatum.  相似文献   

8.
  总被引:1,自引:0,他引:1  
Aim  To test the hypothesis that Caribbean Short-faced bats descended from a single recent ancestor that originated in the continental Neotropics (Mexico, Central America and/or South America).
Location  The Neotropics, including the West Indies.
Methods  New mitochondrial cytochrome b and nuclear Rag2 sequences were combined with published molecular data to estimate phylogenetic relationships and sequence divergence among Short-faced bats. The resulting phylogenies were compared with those compatible with the single-origin hypothesis using two model-based statistical tests. Confidence limits on sequence divergence were estimated using a parametric bootstrap.
Results  All molecular phylogenies revealed two independent Caribbean lineages and showed that continental Short-faced bats share a recent common ancestor. Morphology-based trees compatible with the single-origin hypothesis were significantly worse at explaining the molecular data than any molecular phylogeny.
Main conclusions  The ancestor of all Short-faced bats reached the Antilles in the Miocene, too recently to have used a proposed Oligocene land bridge, and well before the Pleistocene glaciations that are thought to have facilitated dispersal for many bats. After a long period of isolation, Short-faced bats diversified quickly on the Caribbean islands. A single Short-faced lineage then reached the continent and subsequently expanded its range and diversified into the four extant genera. Among bats, independent lineages of aerial insectivores and nectarivores have also recolonized the continent after evolving in the West Indies. The evidence for an insular origin of the short-faced frugivorous radiation completes a dynamic model of Caribbean biogeography that encompasses an entire biological community.  相似文献   

9.
    
Aim We used inferences of phylogeographical structure and estimates of divergence times for three species of gophersnakes (Colubridae: Pituophis) distributed across the Mexican Transition Zone (MTZ) to evaluate the postulated association of three Neogene geological events (marine seaway inundation of the Isthmus of Tehuantepec, formation of the Transvolcanic Belt across central Mexico, and secondary uplifting of the Sierra Madre Occidental) and of Pleistocene climate change with inter‐ and intraspecific diversification. Location Mexico, Guatemala, and the western United States. Methods We combined range‐wide sampling (67 individuals representing three putative species distributed across northern Middle America and western North America) and phylogenetic analyses of 1637 base pairs of mitochondrial DNA to estimate genealogical relationships and divergence times. The hypothesized concordance of inferred gene trees with geological histories was assessed using topology tests. Results We identified three major lineages of Middle American gophersnakes, and strong phylogeographical structure within each lineage. Gene trees were statistically congruent with hypothesized geological histories for two of the three postulated geological events. Estimated divergence dates and the geographical distribution of genetic variation further support mixed responses to these geological events. Considerable phylogeographical structure appears to have been generated during the Pleistocene. Main conclusions Phylogenetic and phylogeographical structure in gophersnakes distributed across northern Middle America and western North America highlights the influence of both Neogene vicariance events and Pleistocene climate change in shaping genetic diversity in this region. Despite the presence of two major geographical barriers in southern Mexico, extreme geological and environmental heterogeneity in this area may have differentially structured genetic diversity in highland taxa. To the north, co‐distributed taxa may display a more predictable pattern of diversification across the warm desert regions. Future studies should incorporate nuclear data to disentangle inferred lineage boundaries and further elucidate patterns of mitochondrial introgression.  相似文献   

10.
Contemporary North American drainage basins are composites of formerly isolated drainages, suggesting that fragmentation and fusion of palaeodrainage systems may have been an important factor generating current patterns of genetic and species diversity in stream-associated organisms. Here, we combine traditional molecular-phylogenetic, multiple-regression, nested clade, and molecular-demographic analyses to investigate the relationship between phylogeographic variation and the hydrogeological history of eastern North American drainage basins in semiaquatic plethodontid salamanders of the Eurycea bislineata species complex. Four hundred forty-two sequences representing 1108 aligned bases from the mitochondrial genome are reported for the five formally recognized species of the E. bislineata complex and three outgroup taxa. Within the in-group, 270 haplotypes are recovered from 144 sampling locations. Geographic patterns of mtDNA-haplotype coalescence identify 13 putatively independent population-level lineages, suggesting that the current taxonomy of the group underestimates species-level diversity. Spatial and temporal patterns of phylogeographic divergence are strongly associated with historical rather than modern drainage connections, indicating that shifts in major drainage patterns played a pivotal role in the allopatric fragmentation of populations and build-up of lineage diversity in these stream-associated salamanders. More generally, our molecular genetic results corroborate geological and faunistic evidence suggesting that palaeodrainage connections altered by glacial advances and headwater erosion occurring between the mid-Miocene and Pleistocene epochs explain regional patterns of biodiversity in eastern North American streams.  相似文献   

11.
12.
    
Glor RE  Vitt LJ  Larson A 《Molecular ecology》2001,10(11):2661-2668
We present a mitochondrial DNA (mtDNA) haplotype phylogeny for Amazonian Anolis lizards, including geographical sampling within four species distributed across the Amazon basin (A. fuscoauratus, A. nitens, A. ortonii and A. punctatus). Approximately 1500 bp of mtDNA encoding ND2, COI and four transfer RNAs (tRNAs) are reported for 39 specimens representing four to five populations of each widespread species, plus eight outgroups. These new sequences are aligned with eight previously published sequences, yielding 914 variable characters and 780 parsimony-informative characters. Phylogenetic analyses using maximum parsimony and maximum likelihood reject the hypothesis that Amazonian anoles form a monophyletic group excluding Central American and Caribbean anoles, and suggest multiple faunal exchanges among these regions. Haplotype divergence among geographical populations of A. nitens, whose variation was influential in formulating the Pleistocene refuge hypothesis of Amazonian speciation, is very large (13-22% sequence difference), suggesting that these populations separated well before the Pleistocene. Haplotype divergences among geographical populations of A. fuscoauratus (3-4%), A. punctatus (4-9%) and A. ortonii (6-8%) also indicate pre-Pleistocene differentiation within each species, but temporally incongruent patterns among species.  相似文献   

13.
The distributions of 51 non-human primate species are used for Parsimony Analysis of Endemicity (PAE) to determine the relationships among 14 interfluvial regions in the Amazon basin, South America. Two most parsimonious cladograms were found. The strict consensus tree of these cladograms suggests an early separation between Lower Amazonia (eastern) and Upper Amazonia (western). The major clusters of interfluvial regions identified in the PAE cladogram are congruent with the areas of endemism delimited for birds. When interfluvial regions are converted into avian areas of endemism, the PAE cladogram is congruent with one of the two general areas cladograms suggested for Amazonia based on phylogenies of several clades of forest birds. Our analysis suggests that PAE can be used as a tool to objectively identify areas of endemism at an intra-continental scale as well as to make historical inferences. However, the value of a PAE cladogram in this latter application should be always evaluated by congruence with area cladograms built upon cladistic biogeography procedures.  相似文献   

14.
15.
16.
    
Phylogenetic relationships among eight of nine Myrmecocichla chat species were inferred from DNA data. Bayesian posterior probabilities and maximum‐likelihood bootstrap percentages strongly supported most branches in the phylogeny. Based on these results, Myrmecocichla, as currently defined, is not monophyletic. The results indicated that Myrmecocichla albifrons is part of a Cercomela + Oenanthe clade, whereas Oenanthe monticola is shown to be a Myrmecocichla. In addition, Myrmecocichla arnotti is shown to be polyphyletic. Phylogenetic analyses support three Southern versus Eastern or Northern speciation events. The dating of these speciation events suggests that they correspond to periods when the Afrotropical forests were expanded to coastal Kenya, 3–5 Mya. This forest expansion thus served as a vicariant driver of speciation in the genus, a result consistent with speciation patterns in other arid‐adapted African bird genera. Our haplotype analysis within one of the most widespread and habitat diverse Myrmecocichla species (formicivora, a southern African endemic) showed little genetic variation. Along with speciation patterns shown for Myrmecocichla and other avian genera, this lack of standing variation would appear to support large, inter‐regional drivers of speciation as having the largest effect on the diversification of arid‐adapted Africa bird species, which is in stark contrast to other vertebrate lineages whose genetic structure often shows strong intra‐regional effects. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 180–190.  相似文献   

17.
Seven new species ofMascagnia are described:M. tomentosa from southern Mexico and Central America;M. arenicola from the Guianas;M. riparia, M. tucuruensis, andM. velutina from Brazil;M. boliviana from Bolivia; andM. australis from Argentina and Paraguay. These novelties were previously included in the “M. sepium-complex,” an omniumgatherum comprising superficially similar yellow-flowered taxa.  相似文献   

18.
    
Aim We evaluate the extent to which the tropical conservatism hypothesis can explain the evolutionary development of the Muscidae. Furthermore, we compare the geographical patterns of muscid phylogenetic structure with biogeographical regions that have been identified for Neotropical insects. Location Central and South America. Methods We modelled the geographic distributions of 658 species using Maxent and 19 environmental variables. A generic‐level supertree of the Muscidae was assembled using matrix representation with parsimony and used to map the geographic pattern of mean root distance (MRD), a metric of the relative evolutionary development of assemblages. Regression models (ordinary least squares and regression trees) were used to examine temperature and other environmental correlates of MRD to explore potential environmental drivers of muscid diversification. We used the regression tree results to recognize variable intervals that best explained MRD, and these intervals were mapped to recognize and compare with biogeographical regions of Neotropical insects. Results The geographic pattern of MRD was consistent with the tropical conservatism hypothesis: species in genera that diversified relatively early, as measured by their distance from the tree root, dominate lowland tropical South America, whereas species in genera that diversified more recently occupy extra‐tropical areas, sub‐Antarctic areas and the Andean highlands. Temperature was the strongest correlate of MRD. Three biogeographical regions were recognized and they coincided with two regions known for insects. Main conclusions Evolutionary responses of muscid flies to post‐Eocene climate change taking the form of an expansion of a tropical group into regions with colder climates may be fundamental to explaining their distribution in the Neotropics. Our biogeographical regions delimited by temperature and the phylogenetic metric, surrogates of the tropical conservatism hypothesis, were very similar to general insect patterns, supporting the ‘tropical origin and evolutionary response to climate cooling’ as a broadly based historical narrative for the Neotropics.  相似文献   

19.
20.
    
  1. The squirrels (Sciuridae), with 292 species, make up the second most diverse family of rodents. Squirrels play important roles as seed and spore dispersers and seed predators in all regions where they occur. In Neotropical regions, around 28 species of squirrel are recognised. However, our knowledge of the ecology of the Neotropical Sciuridae is severely incomplete, lacking in the most basic ecological information for most species.
  2. We reviewed the literature in English, Spanish, and Portuguese, for all squirrel species in the Neotropical biogeographic region, summarising ecological interactions between squirrels and the local biota, population density records, the number of publications, and the distribution of study sites.
  3. We found information for 20 squirrel species (71% of the recognised species), from 15 countries, in 48 publications containing 126 population density records and 155 publications containing 649 ecological interactions. The most studied species were Guerlinguetus brasiliensis, Notosciurus granatensis, and Sciurus variegatoides, with 53% of all publications, whereas for eight species of Microsciurus, we found no publications. The density of Neotropical squirrels varied from 0.08 to 100 individuals per km2 and was negatively correlated with forest area.
  4. Neotropical squirrels were recorded eating 174 plant taxa, five fungus taxa, four invertebrate taxa, and one species of vertebrate. Palms were common in the diet of squirrels (30 palm species, 27% of feeding records). Squirrels cached 28 plant species, of which 15 were palms.
  5. Sixty‐five taxa of parasites are documented to occur in Neotropical squirrels, and the most common were Enderleinellus lice. Zoonotic parasites, including trypanosomes, Leptospira spp., Leishmania spp., and plague were also reported.
  6. Our review reveals the main information gaps in the current knowledge about the ecology of Neotropical Sciuridae and maps the geographic distribution of the available information throughout South and Central America. Squirrels often thrive in small forest fragments and fulfil important roles as seed dispersers and prey for mesopredators.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号