首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The border cells of Drosophila are a model system for coordinated cell migration. Ecdysone signaling has been shown to act as the timing signal to initiate the migration process. Here we find that mutations in phantom (phm), encoding an enzyme in the ecdysone biosynthesis pathway, block border cell migration when the entire follicular epithelium of an egg chamber is mutant, even when the associated germline cells (nurse cells and oocyte) are wild-type. Conversely, mutant germline cells survive and do not affect border cell migration, as long as the surrounding follicle cells are wild-type. Interestingly, even small patches of wild-type follicle cells in a mosaic epithelium are sufficient to allow the production of above-threshold levels of ecdysone to promote border cell migration. The same phenotype is observed with mutations in shade (shd), encoding the last enzyme in the pathway that converts ecdysone to the active 20-hydroxyecdysone. Administration of high 20-hydroxyecdysone titers in the medium can also rescue the border cell migration phenotype in cultured egg chambers with an entirely phm mutant follicular epithelium. These results indicate that in normal oogenesis, the follicle cell epithelium of each individual egg chamber must supply sufficient ecdysone precursors, leading ultimately to high enough levels of mature 20-hydroxyecdysone to the border cells to initiate their migration. Neither the germline, nor the neighboring egg chambers, nor the surrounding hemolymph appear to provide threshold amounts of 20-hydroxyecdysone to do so. This “egg chamber autonomous” ecdysone synthesis constitutes a useful way to regulate the individual maturation of the asynchronous egg chambers present in the Drosophila ovary.  相似文献   

2.
In fly ovaries, the follicular epithelium surrounding germline cells diversifies into several morphologically distinct cell subpopulations. This complex process is crucial for the formation of a regionally complex eggshell and establishment of polarity of the future embryo. Morphogenetic changes accompanying patterning of the follicular epithelium have been best characterized in the model fly, Drosophila melanogaster. Here, we analyze follicular epithelium diversification in the ovaries of Tachypeza nubila, a brachyceran fly closely related to the group Cyclorrhapha, which also includes Drosophila. We provide morphological evidence that in Tachypeza, the diversification process differs from that described in the Drosophila model system in several important respects: (i) follicle cells differentiate into five subpopulations (versus eight in Drosophila); (ii) only one of these subpopulations (i.e. border cells) is migratory (versus four in Drosophila); (iii) the main body follicle cells form a uniform epithelium with no distinct border between follicle cells covering the nurse cell compartment and the oocyte; (iv) chorionic material is deposited not only on the surface of the oocyte but also on the nurse cells; (v) there is no centripetal migration of the follicle cells; (vi) the resulting eggshell is morphologically simple with no regional specializations except for the micropylar apparatus at the anterior pole of the oocyte. Our findings provide novel insights into the evolution of the follicle cell patterning and functioning in dipterans. A critical analysis of these processes in different dipteran groups strongly indicates that in Tachypeza, follicular epithelium diversification follows a distinct pattern, novel for higher dipterans.  相似文献   

3.
The process of epithelial morphogenesis is ubiquitous in animal development, but much remains to be learned about the mechanisms that shape epithelial tissues. The follicle cell (FC) epithelium encapsulating the growing germline of Drosophila is an excellent system to study fundamental elements of epithelial development. During stages 8 to 10 of oogenesis, the FC epithelium transitions between simple geometries-cuboidal, columnar and squamous-and redistributes cell populations in processes described as posterior migration, squamous cell flattening and main body cell columnarization. Here we have carried out a quantitative morphometric analysis of these poorly understood events in order to establish the parameters of and delimit the potential processes that regulate the transitions. Our results compel a striking revision of accepted views of these phenomena, by showing that posterior migration does not involve FC movements, that there is no role for columnar cell apical constriction in FC morphogenesis, and that squamous cell flattening may be a compliant response to germline growth. We utilize mechanical modeling involving finite element computational technologies to demonstrate that time-varying viscoelastic properties and growth are sufficient to account for the bulk of the FC morphogenetic changes.  相似文献   

4.
5.
Drosophila Bazooka and atypical protein kinase C are essential for epithelial polarity and adhesion. We show here that wild-type bazooka function is required during cell invasion of epithelial follicle cells mutant for the tumor suppressor discs large. Clonal studies indicate that follicle cell Bazooka acts as a permissive factor during cell invasion, possibly by stabilizing adhesion between the invading somatic cells and their substratum, the germline cells. Genetic epistasis experiments demonstrate that bazooka acts downstream of discs large in tumor cell invasion. In contrast, during the migration of border cells, Bazooka function is dispensable for cell invasion and motility, but rather is required cell-autonomously in mediating cell adhesion within the migrating border cell cluster. Taken together, these studies reveal Bazooka functions distinctly in different types of invasive behaviors of epithelial follicle cells, potentially by regulating adhesion between follicle cells or between follicle cells and their germline substratum.  相似文献   

6.
7.
This study describes the broad tissue distribution and subcellular localization of Drosophila Zasp52, which is related to the large family of ALP (α-actinin associated protein)/Enigma PDLIM (PDZ and LIM domain) proteins of vertebrates. Results demonstrate that ZCL423 is a protein trap insertion in the Zasp52 locus tagging multiple endogenous splice isoforms with GFP. While Zasp52 has been previously characterized in muscle tissues primarily, visualization of GFP fluorescence in Zasp52 protein trap lines revealed expression in many nonmuscle tissues including the central nervous system, secretory glands, and epithelial tissues constituting the embryonic epidermis, the somatic follicle cell layer encapsulating the germline during oogenesis, and imaginal disc precursors to the adult body. In epithelial cells, Zasp52 typically accumulated basally, adjacent to integrin adhesion sites, and apically along adherens junctions, particularly enriched near junctional vertices of multicellular interfaces. Also Zasp52 showed polarized accumulation at the leading edge of migrating cell populations and morphogenetic boundaries similarly enriched for myosin. As such, Zasp52 GFP protein traps may be useful molecular markers for dynamic epithelial rearrangements. Moreover, the pattern of Zasp52 expression within nonmuscle tissues reveals potential functional roles in cell–cell and cell–matrix adhesion, specifically at sites of increased actomyosin contractile tension. In these contexts, the investigation of Zasp52 may provide insights into the functions of numerous PDLIM proteins of the metazoan lineages.  相似文献   

8.
The destruction of stable cell-cell adhesion and the acquisition of the ability to migrate are consistent stages of neoplastic evolution of tumor cells of epithelial origin. We studied the morphological and migration characteristics of epithelial cells of IAR1162 and IAR1170 clones derived from a mixed culture of N-RasV12 oncogene-transformed IAR-2 cell line. It was found that the oncogenic RAS can cause two types of morphological changes in IAR-2 epithelial cells. Cells of one type (IAR1162 clones) underwent epithelial-mesenchymal transition: they stopped to express E-cadherin, acquired fibroblast-like morphology, and did not form tight junctions. Cells of the other type (IAR1170 clones) retained a morphology close to the morphology of nontransformed progenitor cells, assembled E-cadherin-based adherens junctions and tight junctions, and formed a monolayer in confluent culture. However, in both IAR1162 and IAR1170 cells, the oncogenic RAS caused the destruction of marginal actin bundle and the reorganization of cell-cell adherens junctions. RAS-transformed IAR1162 and IAR1170 epithelial cells acquired the ability to migrate on a flat substrate as well as through narrow pores in membranes of migration chambers. A videomicroscopic study of transformed epithelial cell cultures demonstrated the instability of cell-cell contacts and the independent nature of cell migration. IAR1170 epithelial cells, which had E-cadherin-based adherens junctions, were also able to move as a group (collective migration). 1162D3 cells, which lost the ability to express endogenous E-cadherin as a result of Ras-transformation, were transfected with a plasmid carrying the CDH1. As a result of transfection, clones of cells with different levels of expression of exogenous E-cadherin were obtained. The high level of expression of exogenous E-cadherin in transformed epithelial cells led to a decrease in the rate of migration on a two-dimensional substrate of the cells that were in contact with neighboring cells but almost had no effect on the migration of single cells, at the same time increasing the number of cells that migrated through the pores in migration chambers. Thus, the destruction of marginal actin bundle and the change in the spatial organization of cell-cell adherens junctions, irrespective of the presence or absence of E-cadherin, was accompanied by destruction of stable cell-cell adhesion and the appearance of cell motility in Ras-transformed epithelial cells. The retaining of E-cadherin in cell-cell adhesion junctions affects the motility of transformed epithelial cells and plays an important role in their collective migration.  相似文献   

9.
The spectraplakin family of proteins includes ACF7/MACF1 and BPAG1/dystonin in mammals, VAB-10 in Caenorhabditis elegans, Magellan in zebrafish, and Short stop (Shot), the sole Drosophila member. Spectraplakins are giant cytoskeletal proteins that cross-link actin, microtubules, and intermediate filaments, coordinating the activity of the entire cytoskeleton. We examined the role of Shot during cell migration using two systems: the in vitro migration of Drosophila tissue culture cells and in vivo through border cell migration. RNA interference (RNAi) depletion of Shot increases the rate of random cell migration in Drosophila tissue culture cells as well as the rate of wound closure during scratch-wound assays. This increase in cell migration prompted us to analyze focal adhesion dynamics. We found that the rates of focal adhesion assembly and disassembly were faster in Shot-depleted cells, leading to faster adhesion turnover that could underlie the increased migration speeds. This regulation of focal adhesion dynamics may be dependent on Shot being in an open confirmation. Using Drosophila border cells as an in vivo model for cell migration, we found that RNAi depletion led to precocious border cell migration. Collectively, these results suggest that spectraplakins not only function to cross-link the cytoskeleton but may regulate cell–matrix adhesion.  相似文献   

10.
Xu J  Lan L  Bogard N  Mattione C  Cohen RS 《PloS one》2011,6(5):e20180

Background

The Drosophila egg chamber provides an excellent system in which to study the specification and differentiation of epithelial cell fates because all of the steps, starting with the division of the corresponding stem cells, called follicle stem cells, have been well described and occur many times over in a single ovary.

Methodology/Principal Findings

Here we investigate the role of the small Rab11 GTPase in follicle stem cells (FSCs) and in their differentiating daughters, which include main body epithelial cells, stalk cells and polar cells. We show that rab11-null FSCs maintain their ability to self renew, even though previous studies have shown that FSC self renewal is dependent on maintenance of E-cadherin-based intercellular junctions, which in many cell types, including Drosophila germline stem cells, requires Rab11. We also show that rab11-null FSCs give rise to normal numbers of cells that enter polar, stalk, and epithelial cell differentiation pathways, but that none of the cells complete their differentiation programs and that the epithelial cells undergo premature programmed cell death. Finally we show, through the induction of rab11-null clones at later points in the differentiation program, that Rab11 suppresses tumor-like growth of epithelial cells. Thus, rab11-null epithelial cells arrest differentiation early, assume an aberrant cell morphology, delaminate from the epithelium, and invade the neighboring germline cyst. These phenotypes are associated with defects in E-cadherin localization and a general loss of cell polarity.

Conclusions/Significance

While previous studies have revealed tumor suppressor or tumor suppressor-like activity for regulators of endocytosis, our study is the first to identify such activity for regulators of endocytic recycling. Our studies also support the recently emerging view that distinct mechanisms regulate junction stability and plasticity in different tissues.  相似文献   

11.
Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR+/+ and AhR−/− keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR−/− keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR+/+ and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells.  相似文献   

12.
Cadherin-mediated cell–cell adhesion is required for epithelial tissue integrity in homeostasis, during development, and in tissue repair. E-cadherin stability depends on F-actin, but the mechanisms regulating actin polymerization at cell–cell junctions remain poorly understood. Here we investigated a role for formin-mediated actin polymerization at cell–cell junctions. We identify mDia1 and Fmnl3 as major factors enhancing actin polymerization and stabilizing E-cadherin at epithelial junctions. Fmnl3 localizes to adherens junctions downstream of Src and Cdc42 and its depletion leads to a reduction in F-actin and E-cadherin at junctions and a weakening of cell–cell adhesion. Of importance, Fmnl3 expression is up-regulated and junctional localization increases during collective cell migration. Depletion of Fmnl3 or mDia1 in migrating monolayers results in dissociation of leader cells and impaired wound repair. In summary, our results show that formin activity at epithelial cell–cell junctions is important for adhesion and the maintenance of epithelial cohesion during dynamic processes, such as wound repair.  相似文献   

13.
Our understanding of epithelial development in Drosophila has been greatly improved in recent years. Two key regulators of epithelial polarity, Crumbs and DE-cadherin, have been studied at the genetic and molecular levels and a number of additional genes are being analyzed that contribute to the differentiation of epithelial cell structure. Epithelial architecture has a profound influence on morphogenetic movements, patterning and cell-type determination. The combination of embryological and genetic/molecular tools in Drosophila will help us to elucidate the complex events that determine epithelial cell structure and how they relate to morphogenesis and other developmental processes.  相似文献   

14.
Collective cell movement is a mechanism for invasion identified in many developmental events. Examples include the movement of lateral-line neurons in Zebrafish, cells in the inner blastocyst, and metastasis of epithelial tumors [1]. One key model to study collective migration is the movement of border cell clusters in Drosophila. Drosophila egg chambers contain 15 nurse cells and a single oocyte surrounded by somatic follicle cells. At their anterior end, polar cells recruit several neighboring follicle cells to form the border cell cluster [2]. By stage 9, and over 6 hr, border cells migrate as a cohort between nurse cells toward the oocyte. The specification and directionality of border cell movement are regulated by hormonal and signaling mechanisms [3]. However, how border cells are held together while they migrate is not known. Here, we show that a negative-feedback loop controlling JNK activity regulates border cell cluster integrity. JNK signaling modulates contacts between border cells and between border cells and substratum to sustain collective migration by regulating several effectors including the polarity factor Bazooka and the cytoskeletal adaptor D-Paxillin. We anticipate a role for the JNK pathway in controlling collective cell movements in other morphogenetic and clinical models.  相似文献   

15.
Our previous studies have shown an association between Helicobacter pylori infection, the strong up-regulation of cathepsin X (CTSX, also called cathepsin Z/P), and the development of gastric cancer. In the present study, we analyzed primary and conventional gastric epithelial cell lines to establish an optimal in vitro mouse model system for the examination of H. pylori-induced overexpression of Ctsx in a functional way. Gastric epithelial cells were isolated from stomachs of wild-type C57BL6/N and Ctsx−/− mice and compared with the gastric cancer cell line CLS103. Indirect co-cultures of epithelial cells and macrophages were infected with H. pylori strain SS1 and analyzed for the expression of cathepsins, cytokines, and adhesion factors. Cellular interactions, migration capability, and adherence of H. pylori were assessed using time-lapse video microscopy and colony-forming assays. Isolated primary cells from wild-type and transgenic mice revealed qualities and expression profiles similar to those of corresponding tissue samples. Adherence of H. pylori was significantly higher in primary compared with commercially cells. Thus, induction of cathepsins, cytokines, and adhesion proteins was detected solely in primary cells and co-cultured macrophages. Microarray and migration experiments indicated that Ctsx is involved in B/T-cell proliferation/migration and adhesion of macrophages. Primary epithelial cells from stomach of Ctsx−/− mice represent an excellent model of H. pylori gastritis to elaborate the special functions of Ctsx in regulating the immune response to H. pylori.  相似文献   

16.
Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function.  相似文献   

17.
Border cell migration during Drosophila melanogaster oogenesis is a highly pliable model for studying epithelial to mesenchymal transition and directional cell migration. The process involves delamination of a group of 6 to 10 follicle cells from the epithelium followed by guided migration and invasion through the nurse cell complex toward the oocyte. The guidance cue is mainly provided by the homolog of platelet-derived growth factor/vascular endothelial growth factor family of growth factor, or Pvf, emanating from the oocyte, although Drosophila epidermal growth factor receptor signaling also plays an auxiliary role. Earlier studies implicated a stringent control of the strength of Pvf-mediated signaling since both down-regulation of Pvf and overexpression of active Pvf receptor (Pvr) resulted in stalled border cell migration. Here we show that the metastasis suppressor gene homolog Nm23/awd is a negative regulator of border cell migration. Its down-regulation allows for optimal spatial signaling from two crucial pathways, Pvr and JAK/STAT. Its overexpression in the border cells results in stalled migration and can revert the phenotype of overexpressing constitutive Pvr or dominant-negative dynamin. This is a rare example demonstrating the relevance of a metastasis suppressor gene function utilized in a developmental process involving cell invasion.  相似文献   

18.
Expression of the Drosophila cell adhesion molecule neuroglian in S2 cells leads to cell aggregation and the intracellular recruitment of ankyrin to cell contact sites. We localized the region of neuroglian that interacts with ankyrin and investigated the mechanism that limits this interaction to cell contact sites. Yeast two-hybrid analysis and expression of neuroglian deletion constructs in S2 cells identified a conserved 36-amino acid sequence that is required for ankyrin binding. Mutation of a conserved tyrosine residue within this region reduced ankyrin binding and extracellular adhesion. However, residual recruitment of ankyrin by this mutant neuroglian molecule was still limited to cell contacts, indicating that the lack of ankyrin binding at noncontact sites is not caused by tyrosine phosphorylation. A chimeric molecule, in which the extracellular domain of neuroglian was replaced with the corresponding domain from the adhesion molecule fasciclin II, also selectively recruited ankyrin to cell contacts. Thus, outside-in signaling by neuroglian in S2 cells depends on extracellular adhesion, but does not depend on any unique property of its extracellular domain. We propose that the recruitment of ankyrin to cell contact sites depends on a physical rearrangement of neuroglian in response to cell adhesion, and that ankyrin binding plays a reciprocal role in stabilizing the adhesive interaction.  相似文献   

19.
Li Q  Feng S  Yu L  Zhao G  Li M 《Fly》2011,5(2):81-87
The epithelial follicle cell layer over the egg chamber in Drosophila ovary undergoes patterning and morphogenesis at oogenesis. These developmental processes are essential for constructing the eggshell and establishing the body axes of the egg and resultant embryo, thereby being crucial for the egg development. We have previously shown that lethal(2)giant larvae (lgl), a Drosophila neoplastic tumor suppressor gene (nTSG) is required for the posterior follicle cell (PFC) fate induction during antero-posterior pattern formation of the follicular epithelium. In this report, we further characterize lgl in this epithelium patterning and the morphogenetic changes of specified border cells. Genetic interactions of lgl with discs large (dlg) and scribble (scrib), another two nTSGs in specifying the PFC fate reveal a cooperative role of this group of genes. Meanwhile, we find that loss of lgl function causes failure of follicle cells at the anterior to differentiate properly. The clonal analysis further indicates that lgl is necessary not only for the border cell differentiation, but also for control of the collective border cell migration via presumably modulating the apico-basal polarity and cell adhesion. Overall, we identify Lgl as an essential factor in regulating differentiation and morphogenetic movement of the ovarian epithelial follicle cells.  相似文献   

20.
《Fly》2013,7(2):81-87
The epithelial follicle cell layer over the egg chamber in Drosophila ovary undergoes patterning and morphogenesis at oogenesis. These developmental processes are essential for constructing the eggshell and establishing the body axes of the egg and resultant embryo, thereby being crucial for the egg development. We have previously shown that lethal(2)giant larvae (lgl), a Drosophila neoplastic tumor suppressor gene (nTSG) is required for the posterior follicle cell (PFC) fate induction during antero-posterior pattern formation of the follicular epithelium. In this report, we further characterize lgl in this epithelium patterning and the morphogenetic changes of specified border cells. Genetic interactions of lgl with discs large (dlg) and scribble (scrib), another two nTSGs in specifying the PFC fate reveal a cooperative role of this group of genes. Meanwhile, we find that loss of lgl function causes failure of follicle cells at the anterior to differentiate properly. The clonal analysis further indicates that lgl is necessary not only for the border cell differentiation, but also for control of the collective border cell migration via presumably modulating the apico-basal polarity and cell adhesion. Overall, we identify Lgl as an essential factor in regulating differentiation and morphogenetic movement of the ovarian epithelial follicle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号