首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
As high-conductance calcium- and voltage-dependent potassium channels, BK channels consist of pore-forming, voltage-, and Ca2+-sensing α and auxiliary subunits. The leucine-rich repeat (LRR) domain–containing auxiliary γ subunits potently modulate the voltage dependence of BK channel activation. Despite their dominant size in whole protein masses, the function of the LRR domain in BK channel γ subunits is unknown. We here investigated the function of these LRR domains in BK channel modulation by the auxiliary γ1–3 (LRRC26, LRRC52, and LRRC55) subunits. Using cell surface protein immunoprecipitation, we validated the predicted extracellular localization of the LRR domains. We then refined the structural models of mature proteins on the membrane via molecular dynamic simulations. By replacement of the LRR domain with extracellular regions or domains of non-LRR proteins, we found that the LRR domain is nonessential for the maximal channel-gating modulatory effect but is necessary for the all-or-none phenomenon of BK channel modulation by the γ1 subunit. Mutational and enzymatic blockade of N-glycosylation in the γ1–3 subunits resulted in a reduction or loss of BK channel modulation by γ subunits. Finally, by analyzing their expression in whole cells and on the plasma membrane, we found that blockade of N-glycosylation drastically reduced total expression of the γ2 subunit and the cell surface expression of the γ1 and γ3 subunits. We conclude that the LRR domains play key roles in the regulation of the expression, cell surface trafficking, and channel-modulation functions of the BK channel γ subunits.  相似文献   

3.
4.
Both beta1 and beta2 auxiliary subunits of the BK-type K(+) channel family profoundly regulate the apparent Ca(2)+ sensitivity of BK-type Ca(2)+-activated K(+) channels. Each produces a pronounced leftward shift in the voltage of half-activation (V(0.5)) at a given Ca(2)+ concentration, particularly at Ca(2)+ above 1 microM. In contrast, the rapidly inactivating beta3b auxiliary produces a leftward shift in activation at Ca(2)+ below 1 microM. In the companion work (Lingle, C.J., X.-H. Zeng, J.-P. Ding, and X.-M. Xia. 2001. J. Gen. Physiol. 117:583-605, this issue), we have shown that some of the apparent beta3b-mediated shift in activation at low Ca(2)+ arises from rapid unblocking of inactivated channels, unlike the actions of the beta1 and beta2 subunits. Here, we compare effects of the beta3b subunit that arise from inactivation, per se, versus those that may arise from other functional effects of the subunit. In particular, we examine gating properties of the beta3b subunit and compare it to beta3b constructs lacking either the NH(2)- or COOH terminus or both. The results demonstrate that, although the NH(2) terminus appears to be the primary determinant of the beta3b-mediated shift in V(0.5) at low Ca(2)+, removal of the NH(2) terminus reveals two other interesting aspects of the action of the beta3b subunit. First, the conductance-voltage curves for activation of channels containing the beta3b subunit are best described by a double Boltzmann shape, which is proposed to arise from two independent voltage-dependent activation steps. Second, the presence of the beta3b subunit results in channels that exhibit an anomalous instantaneous outward current rectification that is correlated with a voltage dependence in the time-averaged single-channel current. The two effects appear to be unrelated, but indicative of the variety of ways that interactions between beta and alpha subunits can affect BK channel function. The COOH terminus of the beta3b subunit produces no discernible functional effects.  相似文献   

5.
A family of auxiliary beta subunits coassemble with Slo alpha subunit to form Ca(2)+-regulated, voltage-activated BK-type K(+) channels. The beta subunits play an important role in regulating the functional properties of the resulting channel protein, including apparent Ca(2)+ dependence and inactivation. The beta3b auxiliary subunit, when coexpressed with the Slo alpha subunit, results in a particularly rapid ( approximately 1 ms), but incomplete inactivation, mediated by the cytosolic NH(2) terminus of the beta3b subunit (Xia et al. 2000). Here, we evaluate whether a simple block of the open channel by the NH(2)-terminal domain accounts for the inactivation mechanism. Analysis of the onset of block, recovery from block, time-dependent changes in the shape of instantaneous current-voltage curves, and properties of deactivation tails suggest that a simple, one step blocking reaction is insufficient to explain the observed currents. Rather, blockade can be largely accounted for by a two-step blocking mechanism (C(n) <---> O(n) <---> O(*)(n) <---> I(n)) in which preblocked open states (O*(n)) precede blocked states (I(n)). The transitions between O* and I are exceedingly rapid accounting for an almost instantaneous block or unblock of open channels observed with changes in potential. However, the macroscopic current relaxations are determined primarily by slower transitions between O and O*. We propose that the O to O* transition corresponds to binding of the NH(2)-terminal inactivation domain to a receptor site. Blockade of current subsequently reflects either additional movement of the NH(2)-terminal domain into a position that hinders ion permeation or a gating transition to a closed state induced by binding of the NH(2) terminus.  相似文献   

6.

Aim

Ecological models that do not account for interactions among stressors, if interactions are important, could be inaccurate and lead to inefficient conservation strategies. Conversely, if interactions are not important (i.e., stressors operate largely independently), then actions concentrating on a stressor‐by‐stressor basis would be warranted. Here, we investigated whether interactions among multiple stressors affected widely used indices of freshwater macroinvertebrate biodiversity, which are sensitive to environmental change at management‐relevant scales (i.e., reaches and catchments).

Location

State of Victoria, south‐eastern Australia.

Methods

We used a 7,418‐sample dataset for stream macroinvertebrates from 2,165 sites distributed over 237,630 km2 for 20 years. We calculated the interactive effects on stream macroinvertebrates of stressors operating at different scales, namely vegetation loss at the catchment and reach scales and hydrological change and salinization at the local scale. The importance of interactions among multiple stressors was assessed by comparing the cross‐validated predictive performance of models with and without multiple stressor interaction terms.

Results

Cross‐validated models explained 31%–63% of the variation in the macroinvertebrate responses. The most important stressors were catchment vegetation loss (the proportion of remaining native vegetation cover) and salinity. The inclusion of interaction terms did not increase cross‐validated predictive performance, which indicates that there was little evidence that interactions among stressors were important for explaining variation in commonly used freshwater macroinvertebrate condition indices.

Main conclusions

Interactions among vegetation, salinity and hydrological change stressors may not always be of importance for determining patterns of stream macroinvertebrate biodiversity, so that such interactions may not necessarily be critical considerations for catchment and reach scale management, at least if based on these or comparable condition indices. The mitigation of the impacts of vegetation loss, salinization and hydrological change stressors one‐by‐one probably is sufficient to guide conservation activities and might be advantageous if socio‐political contexts make it difficult to address interactions among stressors.
  相似文献   

7.
Heterotrimeric guanine nucleotide binding proteins transduce signals from cell surface receptors to intracellular effectors. The alpha subunit is believed to confer receptor and effector specificity on the G protein. This role is reflected in the diversity of genes that encode these subunits. The beta and gamma subunits are thought to have a more passive role in G protein function; biochemical data suggests that beta-gamma dimers are shared among the alpha subunits. However, there is growing evidence for active participation of beta-gamma dimers in some G protein mediated signaling systems. To further investigate this role, we examined the diversity of the beta subunit family in mouse. Using the polymerase chain reaction, we uncovered a new member of this family, G beta 4, which is expressed at widely varying levels in a variety of tissues. The predicted amino acid sequence of G beta 4 is 79% to 89% identical to the three previously known beta subunits. The diversity of beta gene products may be an important corollary to the functional diversity of G proteins.  相似文献   

8.
An auxiliary beta2 subunit, when coexpressed with Slo alpha subunits, produces inactivation of the resulting large-conductance, Ca(2+) and voltage-dependent K(+) (BK-type) channels. Inactivation is mediated by the cytosolic NH(2) terminus of the beta2 subunit. To understand the structural requirements for inactivation, we have done a mutational analysis of the role of the NH(2) terminus in the inactivation process. The beta2 NH(2) terminus contains 46 residues thought to be cytosolic to the first transmembrane segment (TM1). Here, we address two issues. First, we define the key segment of residues that mediates inactivation. Second, we examine the role of the linker between the inactivation segment and TM1. The results show that the critical determinant for inactivation is an initial segment of three amino acids (residues 2-4: FIW) after the initiation methionine. Deletions that scan positions from residue 5 through residue 36 alter inactivation, but do not abolish it. In contrast, deletion of FIW or combinations of point mutations within the FIW triplet abolish inactivation. Mutational analysis of the three initial residues argues that inactivation does not result from a well-defined structure formed by this epitope. Inactivation may be better explained by linear entry of the NH(2)-terminal peptide segment into the permeation pathway with residue hydrophobicity and size influencing the onset and recovery from inactivation. Examination of the ability of artificial, polymeric linkers to support inactivation suggests that a variety of amino acid sequences can serve as adequate linkers as long as they contain a minimum of 12 residues between the first transmembrane segment and the FIW triplet. Thus, neither a specific distribution of charge on the linker nor a specific structure in the linker is required to support the inactivation process.  相似文献   

9.
The role of adaptation in determining invasion success has been acknowledged recently, notably through the accumulation of case studies of rapid evolution during bioinvasions. Despite this growing body of empirical evidence, there is still a need to develop the theoretical background of invasions with adaptation. Specifically, the impact of mating system on the dynamics of adaptation during invasion of a new environment remains only partially understood. Here, we analyze a simulation demo-genetic model of bioinvasion accounting for partial asexuality rates. We simulate two levels of recurrent immigration from a source population at mutation–drift–selection equilibrium to a new empty environment with a different adaptive landscape (black-hole sink). Adaptation relies on a quantitative trait coded explicitly by 10 loci under mutation, selection and genetic drift. Using this model, we confirm previous results on the positive effects on invasiveness of migration, mutation and similarity of local phenotypic optima. We further show how the invasion dynamics of the introduced population is affected by the rate of asexuality. Purely asexual species have lower invasion success in terms of probability and time to invasion than species with other mating systems. Among species with mixed mating systems, the greatest invasiveness is observed for species with high asexual rates. We suggest that this pattern is due to inflated genetic variance in the source population through the Hill-Robertson effect (i.e., clonal interference). An interesting consequence is that species with the highest genetic load in their source environment have greatest invasiveness in the new environment.  相似文献   

10.
A W Shyjan  R Levenson 《Biochemistry》1989,28(11):4531-4535
We have developed a panel of antibodies specific for the alpha 1, alpha 2, alpha 3, and beta subunits of the rat Na,K-ATPase. TrpE-alpha subunit isoform fusion proteins were used to generate three antisera, each of which reacted specifically with a distinct alpha subunit isotype. Western blot analysis of rat tissue microsomes revealed that alpha 1 subunits were expressed in all tissues while alpha 2 subunits were expressed in brain, heart, and lung. The alpha 3 subunit, a protein whose existence had been inferred from cDNA cloning, was expressed primarily in brain and copurified with ouabain-inhibitable Na,K-ATPase activity. An antiserum specific for the rat Na,K-ATPase beta subunit was generated from a TrpE-beta subunit fusion protein. Western blot analysis showed that beta subunits were present in kidney, brain, and heart. However, no beta subunits were detected in liver, lung, spleen, thymus, or lactating mammary gland. The distinct tissue distributions of alpha and beta subunits suggest that different members of the Na,K-ATPase family may have specialized functions.  相似文献   

11.
Musingarimi P  Plumb ME  Sodetz JM 《Biochemistry》2002,41(37):11255-11260
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that interact to form the cytolytic membrane attack complex (MAC). It is an oligomeric protein composed of a disulfide-linked C8alpha-gamma heterodimer and a noncovalently associated C8beta chain. C8alpha and C8beta are homologous; both contain an N-terminal thrombospondin type 1 (TSP1) module, a low-density lipoprotein receptor class A (LDLRA) module, an extended central segment referred to as the membrane attack/perforin (MACPF) domain, an epidermal growth factor (EGF) module, and a second TSP1 module at the C-terminus. In this study, the segment of C8beta that confers binding specificity toward C8alpha-gamma was identified using recombinant C8beta constructs in which the N- and/or C-terminal modules were deleted or exchanged with those from C8alpha. Constructs were tested for their ability to bind C8alpha-gamma in solution and express C8 hemolytic activity. Binding to C8alpha-gamma was found to be dependent on the TSP1 + LDLRA + MACPF segment of C8beta. Within this segment, the TSP1 module and MACPF domain are principally involved and act cooperatively to mediate binding. Results from activity assays suggest that residues within this segment also mediate binding and incorporation of C8 into the MAC.  相似文献   

12.
Abstract

Translocation into the endoplasmic reticulum (ER) is the first biogenesis step for hundreds of eukaryotic secretome proteins. Over the past 30 years, groundbreaking biochemical, structural and genetic studies have delineated one conserved pathway that enables ER translocation- the signal recognition particle (SRP) pathway. However, it is clear that this is not the only pathway which can mediate ER targeting and insertion. In fact, over the past decade, several SRP-independent pathways have been uncovered, which recognize proteins that cannot engage the SRP and ensure their subsequent translocation into the ER. These SRP-independent pathways face the same challenges that the SRP pathway overcomes: chaperoning the preinserted protein while in the cytosol, targeting it rapidly to the ER surface and generating vectorial movement that inserts the protein into the ER. This review strives to summarize the various mechanisms and machineries which mediate these stages of SRP-independent translocation, as well as examine why SRP-independent translocation is utilized by the cell. This emerging understanding of the various pathways utilized by secretory proteins to insert into the ER draws light to the complexity of the translocational task, and underlines that insertion into the ER might be more varied and tailored than previously appreciated.  相似文献   

13.
The Arp2/3 complex is critical for nucleation and crosslinking of actin filaments. To gain insight into its subunit topology and assembly pathway, we systematically examined interactions among subunits of human Arp2/3 complex by yeast two-hybrid assays. It was shown that p20-Arc was able to interact with p21-Arc, p34-Arc, and p16-Arc, respectively. In contrast, p41-Arc only interacted with p20-Arc/p16-Arc heterodimer. In addition, we found that structural integrity was important for association between p20-Arc and p21-Arc, while the N-terminal half of p34-Arc was dispensable for its binding to p20-Arc. Our data suggest a key role of p20-Arc and a multistep pathway for the complex formation.  相似文献   

14.
BackgroundThe Meta-Analysis of Glucose and Insulin related traits Consortium (MAGIC) recently identified 16 loci robustly associated with fasting glucose, some of which were also associated with type 2 diabetes. The purpose of our study was to explore the role of these variants in South Asian populations of Punjabi ancestry, originating predominantly from the District of Mirpur, Pakistan.Conclusions/SignificanceAlthough only the SLC30A8 rs11558471 SNP was nominally associated with fasting glucose in our study, the finding that 12 out of 16 SNPs displayed a direction of effect consistent with European studies suggests that a number of these variants may contribute to fasting glucose variation in individuals of South Asian ancestry. We also provide evidence for the first time in South Asians that alleles of SNPs in GLIS3 and ADCY5 may confer risk of type 2 diabetes.  相似文献   

15.
Integrin/ligand interaction is a therapeutic target for many diseases. We previously reported that residues critical for ligand binding are clustered in N-terminal repeat 3 (in the predicted 2-3 loop) of alpha 4, alpha 5 and alpha IIb. Here we have localized residues critical for ligand binding in the alpha 3 subunit of integrin alpha 3 beta 1 with distinct ligand specificity (laminin-5). We identified an alpha 3 epitope common to several function-blocking anti-alpha 3 antibodies at the boundary between repeats 1 and 2 (residues 75-80). We found that swapping the predicted 4-1 loop (residues 153-165) at the boundary between repeats 2 and 3 with the corresponding alpha 4 sequence and mutating Thr-162 and Gly-163 residues in this predicted loop block laminin-5 binding. Thr-162 and Gly-163 and the antibody epitope are separated in the primary structure; however, they are close to each other in the proposed beta-propeller model. Mutating residues recently reported to block (Tyr-186 and Trp-188) or enhance (Asp-122) laminin-5 binding to alpha 3 beta 1 [Krukonis, E. S., Dersch, P., Eble, J. A., and Isberg, R. R.(1998) J. Biol. Chem. 273, 31837-31843] did not affect laminin-5 binding under the assay conditions used. Thr-162 and Gly-163 are not critical for adhesion to invasin, indicating that laminin-5 and invasin may use different recognition mechanisms, and that mutation of Thr-162 and Gly-163 does not drastically affect the integrity of alpha 3 beta 1. These results suggest that residues critical for ligand binding may be similarly (but not identically) located in repeat 3 of the alpha subunit regardless of ligand specificity.  相似文献   

16.
Neuronal nicotinic acetylcholine receptors (nAChRs) are abundant in the rat retina and at least seven heteromeric subtypes have been detected. Axons of retinal ganglion cells form the optic nerve and innervate areas of the brain important for visual processing, including the lateral geniculate nucleus, the superior colliculus, and the pretectal nucleus. Development of eye-specific layers in these projection areas are dependent upon retinal waves which are initially mediated by nAChRs [ Feller et al. , Science 272 (1996), 1182 ; Penn et al. , Science 279 (1998), 2108 ; Bansal et al. , J. Neurosci. 20 (2000), 7672 ]. Unilateral eye-enucleation studies in the rat indicate that nAChRs are on the terminals of optic nerve axons, where they may mediate influences of acetylcholine on visual pathways. In this study, we use radioligand binding and immunoprecipitation with subunit-selective antibodies to investigate the subunit composition of nAChRs in the rat optic nerve. We found multiple nAChR subtypes in the optic nerve, all of which contain the β2 subunit. Most of these receptors are mixed heteromeric subtypes, composed of at least three different subunits. Included among these subtypes is the highest percentage and density of α6- and β3-containing nAChRs of any area of the rat CNS that has been reported.  相似文献   

17.
Immature seeds of some dicotyledonous plants contain IAGlc synthase catalysing the synthesis of 1-O-IAGlc. This enzyme activity is comparable with 1-O-IAGlc synthase activity investigated earlier in liquid endosperm of Zea mays. Polyclonal antibodies against maize 1-O-IAGlc synthase cross-react with partially purified 1-O-IAGlc synthase from immature pea and rape seeds. Single immunoreactive bands were observed at a locus corresponding to 45.7 kDa and 43.7 kDa from pea and rape enzyme preparations, respectively, unlike that from the 50 kDa molecular mass of the maize enzyme. It was also observed that some high molecular weight compounds of pea seeds are labelled in vivo by [(14)C] IAA, and unlabelled 1-O-IAGlc inhibits that labelling. In immature pea seeds 43-49.8% of the IAA-modified high molecular weight compounds, obtained after ultracentrifugation, was found in the soluble fraction and 50.1-57% in the insoluble fraction. Ester-linked IAA accounted for about 6-9% and 38-45.6% in soluble and insoluble material, respectively, estimated after hydrolysis in 1 N NaOH. Enzymatic hydrolysis of IAA-labelled high molecular weight compounds gives free IAA and compound(s) corresponding to IAGlc isomers. These results suggest that 1-O-IAGlc synthesized in legume seeds may be used for the modification of some high molecular weight compounds.  相似文献   

18.
19.

Background

One of the most robust genetic associations for cardiovascular disease (CVD) is the Chromosome 9p21 region. However, the interaction of this locus with environmental factors has not been extensively explored. We investigated the association of 9p21 with myocardial infarction (MI) in individuals of different ethnicities, and tested for an interaction with environmental factors.

Methods and Findings

We genotyped four 9p21 SNPs in 8,114 individuals from the global INTERHEART study. All four variants were associated with MI, with odds ratios (ORs) of 1.18 to 1.20 (1.85×10−8p≤5.21×10−7). A significant interaction (p = 4.0×10−4) was observed between rs2383206 and a factor-analysis-derived “prudent” diet pattern score, for which a major component was raw vegetables. An effect of 9p21 on MI was observed in the group with a low prudent diet score (OR = 1.32, p = 6.82×10−7), but the effect was diminished in a step-wise fashion in the medium (OR = 1.17, p = 4.9×10−3) and high prudent diet scoring groups (OR = 1.02, p = 0.68) (p = 0.014 for difference). We also analyzed data from 19,129 individuals (including 1,014 incident cases of CVD) from the prospective FINRISK study, which used a closely related dietary variable. In this analysis, the 9p21 risk allele demonstrated a larger effect on CVD risk in the groups with diets low or average for fresh vegetables, fruits, and berries (hazard ratio [HR] = 1.22, p = 3.0×10−4, and HR = 1.35, p = 4.1×10−3, respectively) compared to the group with high consumption of these foods (HR = 0.96, p = 0.73) (p = 0.0011 for difference). The combination of the least prudent diet and two copies of the risk allele was associated with a 2-fold increase in risk for MI (OR = 1.98, p = 2.11×10−9) in the INTERHEART study and a 1.66-fold increase in risk for CVD in the FINRISK study (HR = 1.66, p = 0.0026).

Conclusions

The risk of MI and CVD conferred by Chromosome 9p21 SNPs appears to be modified by a prudent diet high in raw vegetables and fruits. Please see later in the article for the Editors'' Summary  相似文献   

20.
Several studies suggest, that the snail Lymnaea stagnalis contains glycoproteins whose oligosaccharide side chains have structural features not commonly found in mammalian glycoproteins. In this study, prostate glands of L. stagnalis were incubated in media containing either [(3)H]-mannose, [(3)H]-glucosamine, or [(3)H]-galactose, and the metabolically radiolabeled protein-bound oligosaccharides were analyzed. The newly synthesized diantennary-like complex-type asparagine-linked chains contained a considerable amount of glucose, next to mannose, GlcNAc, fucose, galactose, and traces of GalNAc. Since glucose has not been found before as a constituent of diantennary N-linked glycans as far as we know, we assayed the prostate gland of L. stagnalis for a potential glucosyltransferase activity involved in the biosynthesis of such structures. We report here, that the prostate gland of L. stagnalis contains a beta1-->4-glucosyltransferase activity that transfers glucose from UDP-glucose to acceptor substrates carrying a terminal N-acetylglucosamine. The enzyme prefers substrates carrying a terminal GlcNAc that is beta6 linked to a Gal or a GalNAc, structures occurring in O-linked glycans, or a GlcNAc that is beta2 linked to mannose, as is present in N-linked glycans. Based on combined structural and enzymatic data, we propose that the novel beta1-->4-gluco-syltransferase present in the prostate gland may be involved in the biosynthesis of Glcbeta1-->4GlcNAc units in complex-type glycans, in particular in N-linked diantennary glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号