首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
盐胁迫对大麦种子细胞膜透性的影响   总被引:14,自引:0,他引:14  
  相似文献   

2.
采用高低2个浓度的NaCl、LiCl及等渗甘露醇溶液处理紫红色表型(紫色型)和绿色表型(绿色型)盐地碱蓬种子,通过测定它们的种子萌发率、吸胀速率和胚内离子含量,研究NaCl胁迫对2种表型种子萌发的离子效应和渗透效应.结果表明:(1)2种表型盐地碱蓬种子萌发率在高浓度(300 mmol/L)和低浓度(100 mmol/L)NaCl处理下均显著降低,紫色型种子萌发率在低浓度下显著低于绿色型,而在高浓度下却显著高于绿色型;绿色型种子萌发率在高浓度(30 mmol/L)和低浓度(10 mmol/L)LiCl处理下均未受到显著影响,但紫色型种子萌发率却均极显著降低;2种表型盐地碱蓬种子萌发率在低浓度等渗甘露醇处理下均极显著低于低浓度NaCl处理,而高浓度等渗甘露醇处理却均与高浓度NaCl处理无显著差异.(2)2表型种盐地碱蓬种子的吸胀速率在低浓度NaCl处理下没有受到显著影响,但高浓度NaCl处理及与之等渗的高浓度甘露醇处理下都显著降低,而且紫色型种子的吸胀速率在等渗甘露醇处理时显著高于绿色型.(3)2种表型盐地碱蓬种子胚中的Na 含量和Na /K 在对照和低浓度NaCl处理下无显著差异,但紫色型种子胚中的Na 、K 含量在高浓度NaCl处理时都显著高于对照,且K 含量增加的幅度远大于Na 含量,导致紫色型种子胚中的Na /K 显著低于绿色型.研究发现,盐地碱蓬种子萌发在低浓度NaCl胁迫下主要受离子效应抑制,而高浓度NaCl胁迫下则主要受渗透效应抑制,紫色型种子萌发率在高浓度NaCl胁迫下高于绿色型的原因之一是前者能维持更低的Na /K 比.  相似文献   

3.
盐生植物盐芥是拟南芥的近缘物种,具有极强的耐盐能力,是很有研究前景的新兴耐盐模式植物.该文主要从离子平衡(Na+的吸收、外排、区隔化)、渗透平衡和过氧化物清除3个方面对近年来国内外有关盐芥耐盐分子机制的研究进展进行综述,以阐述盐芥植物对于盐胁迫反应的生理及分子机制.  相似文献   

4.
汞对萝卜种子发芽及幼苗某些生理特性的影响   总被引:8,自引:2,他引:6  
研究了重金属汞离子(Hg^2 )对萝卜种子发芽及幼苗某些生理特性的影响。结果表明,随着汞离子浓度的增加和处理时间的延长,萝卜种子的发芽率和发芽指数以及幼苗的生长势和生长量均明显下降。幼苗子叶叶绿素a、b的含量下降。幼苗根系、茎叶过氧化物酶的活性则明显升高。  相似文献   

5.
氮离子束注入大麦种子的细胞生物学效应   总被引:4,自引:2,他引:4  
本文研究了用30KevN+离子束注入大麦干种子后其M1代的细胞生物学效应。研究结果表明,低剂量的N+离子注入对大麦种子的萌发及M1胚根、胚芽细胞的有丝分裂有明显的促进作用。离子注入均能诱发胚根细胞和胚芽细胞的染色体畸变和核畸变,呈现微核、双核、小核、桥、断片和落后染色体等多种类型。并在2×1016N+/cm2-8×1016N+/cm2剂量范围内,注入剂量与畸变率之间有显著的正相关,但到1×1017N+/cm2后畸变率却反而下降。研究结果还显示胚芽细胞较胚根细胞对氮离子束更为敏感。  相似文献   

6.
盐胁迫对大麦胚根细胞膜系统的影响   总被引:1,自引:0,他引:1  
研究了大麦种子在盐下吸胀时胚根细胞超微结构的变化,电镜观察发现,盐胁迫下胚根细胞的膜系统修复困难,细胞器分室重建受阻;并且,这种伤害作用随着盐时间的延长而加剧。作者认为,盐胁迫下吸胀对种子伤害很可能是由于盐离子毒害造成膜系统修复不完善所致。  相似文献   

7.
农杆菌对大麦种子萌发及幼苗生长发育的影响   总被引:2,自引:0,他引:2  
以大麦品种(系)为主区('云引大麦Ⅰ'、'云引大麦Ⅱ'和'U008'),农杆菌浸种时间为副区(0.5、1.5和2.5 h),农杆菌菌液浓度为副副区(0.5、1.5和2.5 OD),采用再裂区试验研究了农杆菌浸种处理对大麦种子萌发和幼苗生长发育的影响.结果表明:品种、农杆菌菌液浓度、浸种时间对大麦的种子发芽率、幼苗高度、幼苗鲜重、叶绿素含量、丙二醛(MDA)含量影响无显著的互作效应,而对幼苗POD活性的影响存在显著互作效应;随着浸种时间的延长和菌液浓度的增加,各大麦品种(系)的种子发芽率、幼苗高度、幼苗鲜重、叶绿素含量均呈逐渐降低趋势,幼苗MDA含量则逐渐增加,并以'U008'变化幅度最大;在菌液浓度为0~1.5 OD、浸种时间为0~1.5 h范围内,幼苗POD活性随着菌液浓度的增加和浸种时间的延长而增强,超过该范围则均呈下降趋势,并以'U008'下降最为明显.可见,农杆菌处理对大麦种子萌发和幼苗生长发育有抑制作用,并在菌液浓度超过1.5 OD、浸种时间大于1.5 h时达极显著水平,且大麦品种间存在一定差异.  相似文献   

8.
9.
青霉素对水稻老化种子发芽的影响   总被引:14,自引:0,他引:14  
人工老化的水稻种子经青霉素处理后,发芽率受影响不大,但发芽指数,活力指数,SOD和过氧化氢酶活性有提高子浸泡液的电导率下降。  相似文献   

10.
叶绿体对盐协迫的某些生理适应机制   总被引:1,自引:0,他引:1  
本文介绍了近些年来有关叶绿体对盐胁迫的一些生理适应机制的研究,包括:(1)叶绿体的离子调节;(2)叶绿体的渗透调节;(3)叶绿体内相容溶质对光合酶的保护作用。最后讨论了这方面研究所存在的,今后急需要研究解决的几个问题。  相似文献   

11.
The distribution and fluctuation of sugars in germinating barley seeds were examined by 13C nuclear magnetic resonance (NMR) spectroscopy, 1H-NMR imaging and 1H-NMR localized spectroscopy in relation to morphology. Maltose, sucrose, fructose and oils were detected in intact imbibed seeds by 13C-NMR spectra. During the first 6 d of germination, the maltose content increased and the oil content gradually decreased, whilst the levels of sucrose and fructose remained constant. Sugars were located by 1H-NMR images and 1H-NMR localized spectra in the vascular bundle of the seeds as well as in the solubilized endosperm. They were also detected in the shoots. The sugars detected in an 80% ethanol shoot extract were sucrose and glucose, which were located in the vascular bundles but not in the mesophyll cells of the coleoptile. They were also located in the basal part of the shoot, but not above 7 mm from the scutellum. The data suggest that the sugars are primarily transported through the vascular bundles and, at the same time, rapidly incorporated into mesophyll cells in the leaves.  相似文献   

12.
13.
Barley (Hordeum vulgare L.) seeds (grains) exhibit dormancyat maturity that is largely due to the presence of the glumellae(hulls) that reduce the availability of oxygen (O2) to the embryo.In addition, abscisic acid (ABA) and gibberellins (GAS) interactwith O2 to regulate barley seed dormancy. A population-basedthreshold model was applied to quantify the sensitivities ofseeds and excised embryos to O2, ABA, and GA, and to their interactiveeffects. The median O2 requirement for germination of dormantintact barley seeds was 400-fold greater than for excised embryos,indicating that the tissues enclosing the embryo markedly limitO2 penetration. However, embryo O2 thresholds decreased by anotherorder of magnitude following after-ripening. Thus, increasesin both permeability of the hull to O2 and embryo sensitivityto O2 contribute to the improvement in germination capacityduring after-ripening. Both ABA and GA had relatively smalleffects on the sensitivity of germination to O2, but ABA andGA thresholds varied over several orders of magnitude in responseto O2 availability, with sensitivity to ABA increasing and sensitivityto GA decreasing with hypoxia. Simple additive models of O2–ABAand O2–GA interactions required consideration of theseO2 effects on hormone sensitivity to account for actual germinationpatterns. These quantitative and interactive relationships amongO2, ABA, and GA sensitivities provide insight into how dormancyand germination are regulated by a combination of physical (O2diffusion through the hull) and physiological (ABA and GA sensitivities)factors. Key words: Abscisic acid, barley, germination, gibberellin, Hordeum vulgare L., model, oxygen, sensitivity Received 2 August 2007; Revised 14 November 2007 Accepted 19 November 2007  相似文献   

14.

Background and Aims

Seed germination is negatively affected by salinity, which is thought to be due to both osmotic and ion-toxicity effects. We hypothesize that salt is absorbed by seeds, allowing them to generate additional osmotic potential, and to germinate in conditions under which they would otherwise not be able to germinate.

Methods

Seeds of barley, Hordeum vulgare, were germinated in the presence of either pure water or one of five iso-osmotic solutions of polyethylene-glycol (PEG) or NaCl at 5, 12, 20 or 27 °C. Germination time courses were recorded and germination indices were calculated. Dry mass, water content and sodium concentration of germinating and non-germinating seeds in the NaCl treatments at 12 °C were measured. Fifty supplemental seeds were used to evaluate the changes in seed properties with time.

Key Results

Seeds incubated in saline conditions were able to germinate at lower osmotic potentials than those incubated in iso-osmotic PEG solutions and generally germinated faster. A positive correlation existed between external salinity and seed salt content in the saline-incubated seeds. Water content and sodium concentration increased with time for seeds incubated in NaCl. At higher temperatures, germination percentage and dry mass decreased whereas germination index and sodium concentration increased.

Conclusions

The results suggest that barley seeds can take up sodium, allowing them to generate additional osmotic potential, absorb more water and germinate more rapidly in environments of lower water potential. This may have ecological implications, allowing halophytic species and varieties to out-compete glycophytes in saline soils.  相似文献   

15.
Ornithine decarboxylase (ODC; EC 4.1.1.17) and its antizyme (Az), a protein non-competitive inhibitor of ODC, form a complex in germinated barley ( Hordeum vulgare L. cv. Georgia) seeds. The ODC-Az complex is very stable, but dissociates by treatment with 10% ammonium sulfate. ODC-Az complex is present in the cytosol, and it can also be extracted from germinated barley seed chromatin with 2 M NaCl.  相似文献   

16.
Glutamine synthetase (GS; EC 6.3.1.2) is a key enzyme of ammonia assimilation in higher plants. In the present study the subunit composition and localization of GS in germinating barley ( Hordeum vulgare ) seed have been clarified. Analysis of the GS polypeptide composition by immunoblotting revealed two different polypeptides. A and B, with a molecular mass of 42 and 40 kDa, respectively. In the scutellum subunit A was already present in the ungerminated seed and remained unchanged, whereas subunit B appeared on day 2 and increased about 5-fold during germination. Polypeptide B also appeared later during germination in the aleurone layer, roots and weakly in the etiolated shoots. By immunogold microscopy, GS was detected in the scutellum and the aleurone layer of barley seeds during germination. Subcellular localization of GS on ultrathin cryosections showed that a cytosolic isozyme was present in the scutellum. Our study confirms that only a cytosolic GS is expressed in barley seed, and its subunit composition changes during germination.  相似文献   

17.
Molybdenum cofactor (Mo-co) was determined in seeds of wheat and barley by its ability to restore nitrate reductase (NR) activity in extracts of nitrate reductase-deficient mutants. Its activity was compared with that of wheat roots and leaves. Conditions for assay of Mo-co from different sources in the presence of molybdate and reduced glutathione (GSH) were optimised. The effect of heat-treatment of cell-free extracts from seeds, roots and leaves was also investigated. Mutant extracts of Neurospora crassa nit-1 and Nicotiana tabacum CnxA68, used as apoprotein source for in vitro complementation, were shown to give comparable results. The Mo-co activity, extracted from wheat and barley seeds, could be separated into two peaks by gel chromatography.  相似文献   

18.
Genotypic variation in response of barley to boron deficiency   总被引:2,自引:0,他引:2  
Responses of a range of barley (Hordeum vulgare L.) genotypes to boron (B) deficiency were studied in two experiments carried out in sand culture and in the field at Chiang Mai, Thailand. In experiment 1, two barley genotypes, Stirling (two-row) and BRB 2 (six-row) and one wheat (Triticum aestivum L.) genotype, SW 41, were evaluated in sand culture with three levels of applied B (0, 0.1 and 1.0 μM B) to the nutrient solution. It was found that B deficiency depressed flag leaf B concentration at booting, grain number and grain yield of all genotypes. In barley Stirling, B deficiency also depressed number of spikes plant-1, spikelets spike-1 and straw yield. However, no significant difference between genotypes in flag leaf B concentration was found under low B treatments. Flag leaf B concentration below 4 mg kg-1 was associated with grain set reduction and could, therefore, be used as a general indicator for B status in barley. In experiment 2, nine barley and two wheat genotypes were evaluated in the field on a low B soil with three levels of B. Boron levels were varied by applying either 2 t of lime ha-1 (BL), no B (B0) or 10 kg Borax ha-1 (B+) to the soil prior to sowing. Genotypes differed in their B response for grain spike-1, grain spikelet-1 and grain set index (GSI). The GSI of the B efficient wheat, Fang 60, exceeded 90% in all B treatments. The B inefficient wheat SW 41 and most of the barley genotypes set grain normally (GSI >80%) only at the B+. In B0 GSI of the barley genotypes ranged from 23% to 84%, and in BL from 19% to 65%. Three of the barley with severely depressed GSI in B0 and BL also had a decreased number of spikelets spike-1. In experiment 3, 21 advanced barley lines from the Barley Thailand Yield Nursery 1997/98 (BTYN 1997/98) were screened for B response in sand culture with no added B. Grain Set Index of the Fang 60 and SW 41 checks were 98 and 65%, respectively, and GSI of barley lines ranged between 5 and 90%. One advanced line was identified as B efficient and two as moderately B efficient. The remaining lines ranked between moderately inefficient to inefficient. These experiments have established that there is a range of responses to B in barley genotypes. This variation in the B response was observed in vegetative as well as reproductive growth. Boron efficiency should be considered in breeding and selection of barley in low B soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
X-Ray microanalysis of fully hydrated, bulk-frozen samples was used to measure concentrations of potassium, sodium and chloride in various cell types along seminal roots of barley ( Hordeum vulgare L. cv. California Mariout) seedlings (1 to 150 mm from the tip). In the cytoplasm of all meristematic cells 1 mm from the root tip, the average concentrations of potassium and chloride were ca 200 and 15 m M , respectively. The potassium level was also high in the vacuoles of incipient xylem elements and did not drop to significantly lower values until 10 mm from the tip in protoxylem, 50 mm in early metaxylem and 150 mm in late metaxylem (LMX). Light microscopy observations (Nomarski optics) of hand-cut sections showed the presence of cytoplasmic strands and also the presence of intact cross walls in LMX up to a distance of 100 mm. Both quantitative analysis of ion contents and structural observations suggested that LMX elements act as a large transitional sink of accumulated ions and therefore may not function as a main pathway of transport until perforation of the end wall takes place 100–150 mm from the root tip. Treatment with 50 m M NaCl resulted in higher concentrations of sodium and chloride in LMX elements than in the surrounding cells, suggesting that living xylem elements, which develop a large central vacuole at an early stage of root differentiation, may assist in alleviating salinity stress in the meristematic region of barley root tips. Further, it is proposed that reabsorption of sodium and chloride from the LMX, especially before the disappearance of the cross walls, may provide a means of salinity tolerance.  相似文献   

20.
Abstract Salt-stressed plants often show Ca deficiency symptoms. The effects of NaCl salinity (1 to 150 mol m-3) and supplemental Ca (10 mol m-3) on Na and Ca transport in barley (Hordeum vulgare L.) and their relationship to growth were investigated. The adjustment of Na and Ca transport was investigated by examining young seedlings exposed to short-term (immediate) and long-term (7 d) exposure to salinity. When the plants were exposed to long-term treatments of salinity, the rate of sodium accumulation in roots was approximately 10 to 15% of short-term treatments. No significant adjustment in the transport to the shoot was observed. Rates of tracer (22Na) transport were compared to calculated rates based on relative growth rates and tissue element concentrations. Comparisons between measured tracer and calculated rates of transport indicate that 22Na transport may underestimate transport to the shoot because of dilution of the tracer in the root cytoplasm. Calcium uptake showed only minor adjustment with time. Measured rates of tracer transport to the shoot correlated well with calculated values. The transport and tissue concentrations of Na were significantly affected by supplemental Ca. Calcium transport and tissue concentrations were markedly inhibited by salinity. Supplemental Ca increased Ca transport and accumulation at all NaCl treatments above that of control plants without supplemental Ca. Salinity inhibited plant growth at 150 mol m -3NaCl, but not at 75 mol m-3. Supplemental Ca significantly improved root length but not fresh weight after 7d of salinity, although differences in fresh weight were detected after 9d. There were significant Na-Ca interactions with ion transport, ion accumulation, and growth. The effects of salinity on Na and Ca transport to the shoot do not appear to play a major role in shoot growth of barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号