首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles.  相似文献   

2.
Pain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.  相似文献   

3.
The development and modulation of nociceptive circuitry   总被引:2,自引:0,他引:2  
  相似文献   

4.
Pain is a complex disease which can progress into a debilitating condition. The effective treatment of pain remains a challenge as current therapies often lack the desired level of efficacy or tolerability. One therapeutic avenue, the modulation of ion channel signaling by small molecules, has shown the ability to treat pain. However, of the 215 ion channels that exist in the human genome, with 85 ion channels having a strong literature link to pain, only a small number of these channels have been successfully drugged for pain. The focus of future research will be to fully explore the possibilities surrounding these unexplored ion channels. Toward this end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the treatment of pain.  相似文献   

5.
Local anesthetics effectively suppress pain sensation, but most of these compounds act nonselectively, inhibiting activity of all neurons. Moreover, their actions abate slowly, preventing precise spatial and temporal control of nociception. We developed a photoisomerizable molecule, quaternary ammonium-azobenzene-quaternary ammonium (QAQ), that enables rapid and selective optical control of nociception. QAQ is membrane-impermeant and has no effect on most cells, but it infiltrates pain-sensing neurons through endogenous ion channels that are activated by noxious stimuli, primarily TRPV1. After QAQ accumulates intracellularly, it blocks voltage-gated ion channels in the trans form but not the cis form. QAQ enables reversible optical silencing of mouse nociceptive neuron firing without exogenous gene expression and can serve as a light-sensitive analgesic in rats in vivo. Because intracellular QAQ accumulation is a consequence of nociceptive ion-channel activity, QAQ-mediated photosensitization is a platform for understanding signaling mechanisms in acute and chronic pain.  相似文献   

6.
Cheng JK  Ji RR 《Neurochemical research》2008,33(10):1970-1978
During evolution, living organisms develop a specialized apparatus called nociceptors to sense their environment and avoid hazardous situations. Intense stimulation of high threshold C- and Aδ-fibers of nociceptive primary sensory neurons will elicit pain, which is acute and protective under normal conditions. A further evolution of the early pain system results in the development of nociceptor sensitization under injury or disease conditions, leading to enhanced pain states. This sensitization in the peripheral nervous system is also called peripheral sensitization, as compared to its counterpart, central sensitization. Inflammatory mediators such as proinflammatory cytokines (TNF-α, IL-1β), PGE2, bradykinin, and NGF increase the sensitivity and excitability of nociceptors by enhancing the activity of pronociceptive receptors and ion channels (e.g., TRPV1 and Nav1.8). We will review the evidence demonstrating that activation of multiple intracellular signal pathways such as MAPK pathways in primary sensory neurons results in the induction and maintenance of peripheral sensitization and produces persistent pain. Targeting the critical signaling pathways in the periphery will tackle pain at the source. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

7.
8.
The soluble epoxide hydrolase (sEH) enzyme regulates the levels of endogenous epoxygenated fatty acid (EFA) lipid metabolites by rapidly degrading these molecules. The EFAs have pleiotropic biological activities including the modulation of nociceptive signaling. Recent findings indicate that the EFAs, in particular the arachidonic acid (AA) derived epoxyeicosatrienoic acids (EETs), the docosahexaenoic acid (DHA) derived epoxydocosapentaenoic acids (EpDPEs) and eicosapentaenoic acid (EPA) derived epoxyeicosatetraenoic acids (EpETEs) are natural signaling molecules. The tight regulation of these metabolites speaks to their importance in regulating biological functions. In the past several years work on EFAs in regard to their activities in the nervous system evolved to demonstrate that these molecules are anti-inflammatory and anti-nociceptive. Here we focus on the recent advances in understanding the effects of sEH inhibition and increased EFAs on the nociceptive system and their ability to reduce pain. Evidence of their role in modulating pain signaling is given by their direct application and by inhibiting their degradation in various models of pain. Moreover, there is mounting evidence of EFAs role in the crosstalk between major nociceptive and anti-nociceptive systems which is reviewed herein. Overall the fundamental knowledge generated within the past decade indicates that orally bioavailable small molecule inhibitors of sEH may find a place in the treatment of a number of diverse painful conditions including inflammatory and neuropathic pain.  相似文献   

9.

Background

Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis) causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs) are expressed in pain-relevant loci (dorsal root ganglia, DRG), which suggests their possible involvement in nociception, but their functions in pain remain unclear.

Results

In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA). In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1) was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function.

Conclusion

Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after inflammation may not only directly activate proton-sensing ion channels (such as TRPV1) to cause pain but also act on proton-sensing GPCRs to regulate the development of hyperalgesia.  相似文献   

10.
The ability of sensory neurons to detect potentially harmful stimuli relies on specialized molecular signal detectors such as transient receptor potential (TRP) A1 ion channels. TRPA1 is critically implicated in vertebrate nociception and different pain states. Furthermore, TRPA1 channels are subject to extensive modulation and regulation - processes which consequently affect nociceptive signaling. Here we show that the neuropeptide Nocistatin sensitizes TRPA1-dependent calcium influx upon application of the TRPA1 agonist mustard oil (MO) in cultured sensory neurons of dorsal root ganglia (DRG). Interestingly, TRPV1-mediated cellular calcium responses are unaffected by Nocistatin. Furthermore, Nocistatin-induced TRPA1-sensitization is likely independent of the Nocistatin binding partner 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) as assessed by siRNA-mediated knockdown in DRG cultures. In conclusion, we uncovered the sensitization of TRPA1 by Nocistatin, which may represent a novel mechanism how Nocistatin can modulate pain.  相似文献   

11.
Ca(2+)-permeable AMPA receptors are densely expressed in the spinal dorsal horn, but their functional significance in pain processing is not understood. By disrupting the genes encoding GluR-A or GluR-B, we generated mice exhibiting increased or decreased numbers of Ca(2+)-permeable AMPA receptors, respectively. Here, we demonstrate that AMPA receptors are critical determinants of nociceptive plasticity and inflammatory pain. A reduction in the number of Ca(2+)-permeable AMPA receptors and density of AMPA channel currents in spinal neurons of GluR-A-deficient mice is accompanied by a loss of nociceptive plasticity in vitro and a reduction in acute inflammatory hyperalgesia in vivo. In contrast, an increase in spinal Ca(2+)-permeable AMPA receptors in GluR-B-deficient mice facilitated nociceptive plasticity and enhanced long-lasting inflammatory hyperalgesia. Thus, AMPA receptors are not mere determinants of fast synaptic transmission underlying basal pain sensitivity as previously thought, but are critically involved in activity-dependent changes in synaptic processing of nociceptive inputs.  相似文献   

12.
Prostaglandins (PGs) are requisite components of inflammatory pain as indicated by the efficacy of cyclooxygenase 1/2 (COX1/2) inhibitors. PGs do not activate nociceptive ion channels directly, but sensitize them by downstream mechanisms linked to G-protein coupled receptors. Antiinflammatory effects are purported to arise from inhibition of synthesis and/or release of proinflammatory agents. Release of these agents from peripheral and central terminals of sensory neurons modulates nociceptive input from the periphery and synaptic transmission at the first sensory synapse, respectively. Heart and blood vessels are densely innervated by sensory nerve endings that express chemo-, mechano-, and thermo-sensitive receptors. Activation of these receptors mediates synthesis and/or release of vasoactive agents by virtue of their Ca2+permeability. In this article, we discuss that inhibition of COX2 reduces PG synthesis and renders beneficial effects by preventing sensitization of nociceptors, but at the same time, it might contribute to deleterious cardiovascular effects by compromising the synthesis and/or release of vasoactive agents.  相似文献   

13.
Transduction and transmission properties of primary nociceptive afferents.   总被引:3,自引:0,他引:3  
The prototypical primary nociceptive afferent is the polymodal C-fiber nociceptor, which responds to noxious thermal, mechanical, and chemical stimuli. C-fiber nociceptors are peripheral terminals of small neurons in the dorsal root ganglia (DRG). DRG neurons must therefore supply their peripheral terminals with the molecular machinery for the encoding of noxious stimuli into trains of action potentials. The following phenomena are known for this encoding process in vivo: 1) adaptation: for a constant stimulus intensity the action potential discharge decreases slowly within 2-3 seconds, 2) fatigue: recovery from adaptation may take ten minutes or more, 3) sensitization: preceding tissue damage enhances the response, particularly to heat stimuli. Recent studies in vitro have provided important clues about the molecular mechanisms underlying these phenomena. Several membrane receptors and channels are specifically expressed in small nociceptive neurons, such as vanilloid receptors (VR1), purinergic receptors (P2X3), acid sensing ion channels (ASIC), and TTX-resistant Na-channels. In the near future, we may therefore expect major advances in our understanding of the transduction of noxious stimuli into generator potentials and transformation into trains of action potentials. Along the axon that leads from the innervated tissue to the spinal cord, primary nociceptive afferents have a limited capacity to transmit high impulse rates, suggesting a different composition of voltage-gated channels than in other primary afferents (low-threshold mechanoreceptors and thermoreceptors). Finally, the DRG neuron also supplies its central terminals with the molecular machinery for synaptic transmission and its presynaptic modulation. Progress in understanding the cellular mechanisms at both ends of the primary nociceptive neuron promises to lead to new analgesic treatment modalities for both acute and chronic pain.  相似文献   

14.
Sigma-1受体(sigma-1 receptor,Sig-1R)属于配基依赖性的分子伴侣蛋白质,广泛表达于神经系统的多个区域,并可通过结合多种类型的阳离子通道及G蛋白偶联受体(G-protein-coupled receptors,GPCRs)对它们介导的细胞内效应进行调控,或是在内质网和线粒体相关膜结构上对细胞内...  相似文献   

15.

Enhanced sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful are hallmark sensory perturbations associated with chronic pain. It is now appreciated that ATP, through its actions as an excitatory neurotransmitter, plays a prominent role in the initiation and maintenance of chronic pain states. Mechanistically, the ability of ATP to drive nociceptive sensitivity is mediated through direct interactions at neuronal P2X3 and P2X2/3 receptors. Extracellular ATP also activates P2X4, P2X7, and several P2Y receptors on glial cells within the spinal cord, which leads to a heightened state of neural-glial cell interaction in ongoing pain states. Following the molecular identification of the P2 receptor superfamilies, selective small molecule antagonists for several P2 receptor subtypes were identified, which have been useful for investigating the role of specific P2X receptors in preclinical chronic pain models. More recently, several P2X receptor antagonists have advanced into clinical trials for inflammation and pain. The development of orally bioavailable blockers for ion channels, including the P2X receptors, has been traditionally difficult due to the necessity of combining requirements for target potency and selectivity with suitable absorption distribution, metabolism, and elimination properties. Recent studies on the physicochemical properties of marketed orally bioavailable drugs, have identified several parameters that appear critical for increasing the probability of achieving suitable bioavailability, central nervous system exposure, and acceptable safety necessary for clinical efficacy. This review provides an overview of the antinociceptive pharmacology of P2X receptor antagonists and the chemical diversity and drug-like properties for emerging antagonists of P2X3, P2X2/3, P2X4, and P2X7 receptors.

  相似文献   

16.
Enhanced sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful are hallmark sensory perturbations associated with chronic pain. It is now appreciated that ATP, through its actions as an excitatory neurotransmitter, plays a prominent role in the initiation and maintenance of chronic pain states. Mechanistically, the ability of ATP to drive nociceptive sensitivity is mediated through direct interactions at neuronal P2X3 and P2X2/3 receptors. Extracellular ATP also activates P2X4, P2X7, and several P2Y receptors on glial cells within the spinal cord, which leads to a heightened state of neural-glial cell interaction in ongoing pain states. Following the molecular identification of the P2 receptor superfamilies, selective small molecule antagonists for several P2 receptor subtypes were identified, which have been useful for investigating the role of specific P2X receptors in preclinical chronic pain models. More recently, several P2X receptor antagonists have advanced into clinical trials for inflammation and pain. The development of orally bioavailable blockers for ion channels, including the P2X receptors, has been traditionally difficult due to the necessity of combining requirements for target potency and selectivity with suitable absorption distribution, metabolism, and elimination properties. Recent studies on the physicochemical properties of marketed orally bioavailable drugs, have identified several parameters that appear critical for increasing the probability of achieving suitable bioavailability, central nervous system exposure, and acceptable safety necessary for clinical efficacy. This review provides an overview of the antinociceptive pharmacology of P2X receptor antagonists and the chemical diversity and drug-like properties for emerging antagonists of P2X3, P2X2/3, P2X4, and P2X7 receptors.  相似文献   

17.
Transient receptor potential (TRP) proteins are a family of ion channels central for sensory signaling. These receptors and, in particular, those involved in thermal sensing are also involved in pain signaling. Noteworthy, thermosensory receptors are polymodal ion channels that respond to both physical and chemical stimuli, thus integrating different environmental clues. In addition, their activity is modulated by algesic agents and lipidergic substances that are primarily released in pathological states. Lipids and lipid-like molecules have been found that can directly activate some thermosensory channels or modulate their activity by either potentiating or inhibiting it. To date, more than 50 endogenous lipids that can regulate TRP channel activity in sensory neurons have been described, thus representing the majority of known endogenous TRP channel modulators. Lipid modulators of TRP channels comprise lipids from a variety of metabolic pathways, including metabolites of the cyclooxygenase, lipoxygenase and cytochrome-P450 pathways, phospholipids and lysophospholipids. Therefore, TRP-channels are able to integrate and interpret incoming signals from the different metabolic lipid pathways. Taken together, the large number of lipids that can activate, sensitize or inhibit neuronal TRP-channels highlights the pivotal role of these molecules in sensory biology as well as in pain transduction and perception. This article is part of a Special Issue entitled: Lipid–protein interactions. Guest Editors: Amitabha Chattopadhyay and Jean-Marie Ruysschaert.  相似文献   

18.
Neurobiology of pain   总被引:3,自引:0,他引:3  
The neurobiology of pain had a notable interest in research focused on the study of neuronal plasticity development, nociceptors, molecular identity, signaling mechanism, ionic channels involved in the generation, modulation and propagation of action potential in all type of excitable cells. All the findings open the possibility for developing new therapeutic treatment. Nociceptive/inflammatory pain and neuropathic pain represent two different kinds of persistent chronic pain. We have reviewed the different mechanism suggested for the maintenance of pain, like descending nociceptive mechanism and their changes after tissue damage, including suppression and facilitation of defence behavior during pain. The role of these changes in inducing NMDA and AMPA receptors gene expression, after prolonged inflammation is emphasized by several authors. Furthermore, a relation between a persistent pain and amygdale has been shown. Molecular biology is the new frontier in the study of neurobiology of pain. Since the entire genome has been studied, we will able to find new genes involved in specific condition such as pain, because an altered gene expression can regulate neuronal activity after inflammation or tissue damage.  相似文献   

19.
Antiepileptic drugs (AEDs) are commonly prescribed for nonepileptic conditions, including migraine headache, chronic neuropathic pain, mood disorders, schizophrenia and various neuromuscular syndromes. In many of these conditions, as in epilepsy, the drugs act by modifying the excitability of nerve (or muscle) through effects on voltage-gated sodium and calcium channels or by promoting inhibition mediated by gamma-aminobutyric acid (GABA) A receptors. In neuropathic pain, chronic nerve injury is associated with the redistribution and altered subunit compositions of sodium and calcium channels that predispose neurons in sensory pathways to fire spontaneously or at inappropriately high frequencies, often from ectopic sites. AEDs may counteract this abnormal activity by selectively affecting pain-specific firing; for example, many AEDs suppress high-frequency action potentials by blocking voltage-activated sodium channels in a use-dependent fashion. Alternatively, AEDs may specifically target pathological channels; for example, gabapentin is a ligand of alpha2delta voltage-activated calcium channel subunits that are overexpressed in sensory neurons after nerve injury. Emerging evidence suggests that effects on signaling pathways that regulate neuronal plasticity and survival may be a factor in the delayed clinical efficacy of AEDs in some neuropsychiatric conditions, including bipolar affective disorder.  相似文献   

20.
Studies of bacterial ion channels have provided significant insights into the structure-function relationships of mechanosensitive and voltage-gated ion channels. However, to date, very few bacterial channels that respond to small molecules have been identified, cloned, and characterized. Here, we use bioinformatics to identify a novel family of bacterial cyclic nucleotide-gated (bCNG) ion channels containing a channel domain related by sequence homology to the mechanosensitive channel of small conductance (MscS). In this initial report, we clone selected members of this channel family, use electrophysiological measurements to verify their ability to directly gate in response to cyclic nucleotides, and use osmotic downshock to demonstrate their lack of mechanosensitivity. In addition to providing insight into bacterial physiology, these channels will provide researchers with a useful model system to investigate the role of ligand-gated ion channels (LGICs) in the signaling processes of higher organisms. The identification of these channels provides a foundation for structural and functional studies of LGICs that would be difficult to perform on mammalian channels. Moreover, the discovery of bCNG channels implies that bacteria have cyclic nucleotide-gated and cyclic nucleotide-modulated ion channels, which are analogous to the ion channels involved in eukaryotic secondary messenger signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号