首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of Fucus spiralis germlings to precise copper concentrations (0 to 844?nM?Cu2+) in chemically defined medium demonstrated a relationship between ultrastructural changes and growth retardation with increasing copper concentration. Electron-translucent vesicles, present in ova, which normally disappear after fertilization, accumulated in germlings exposed to Cu2+ above 10.6?nM, suggesting that copper may inhibit a metabolic pathway involved in cell wall formation which is initiated by fertilization. No membrane damage was observed during the exposure period. During a post-exposure period in copper-free medium, recovery occurred (rhizoid extension, apical hair formation) in germlings previously exposed to concentrations below 106?nM?Cu2+ and electron-translucent vesicles became granular and disappeared. It is proposed that the electron-translucent vesicles contain a cell wall precursor and that copper inhibits its incorporation into the cell wall, preventing growth and development of the zygote.  相似文献   

2.
Mechanically isolated mesophyll cells of Zinnia elegans differentiate into tracheary elements (TEs) when cultured in a medium containing adequate auxin and cytokinin. Differentiation in this culture system is relatively synchronous, rapid (occuring within 3 days of cell isolation) and efficient (with up to 65% of the mesophyll cells differentiating into TEs), and does not require prior mitosis. The Zinnia system has been used to investigate (a) cytological and ultrastructural changes occurring during TE differentiation, such as the reorganization of microtubules controlling secondary wall deposition, (b) the influences of calcium and of various plant hormones and antihormones on TE differentiation, and (c) biochemical changes during differentiation, including those occurring during secondary wall deposition, lignification and autolysis. This review summarizes experiments in which the Zinnia system has served as a model for the study of TE differentiation.  相似文献   

3.

Background  

Gene expression in Petunia inflata petals undergoes major changes following compatible pollination. Severe flower wilting occurs reproducibly within 36 hours, providing an excellent model for investigation of petal senescence and programmed cell death. Expression of a number of genes and various enzyme activities involved in the degradation and remobilization of macromolecules have been found to be upregulated during the early stages of petal senescence.  相似文献   

4.
Summary The beet cyst nematodeHeterodera schachtii is able to establish a feeding structure (syncytium) in the vascular tissue of roots and shoots ofArabidopsis thaliana. Histological and ultrastructural studies were performed to assess plant responses during the development of juvenile females under monoxenic conditions. After destructively invading a root the nematode selects and pierces a single procambial cell with its stylet and transforms it into an initial syncytial cell (ISC) by secretory activity. The first most obvious changes in the ISC occur in the vacuolar system and at the wall. Differentiation of a central vacuole is impeded resulting in the formation of numerous small vacuoles. Multivesicular and paramural bodies are formed. An electron translucent material is deposited on the cell wall. Partial dissolution of the cell wall leads to the formation of a syncytium. At the juveniles' last pre-adult developmental stage the syncytium attains its maximum longitudinal and radial extension, occupying a major part of the central cylinder. Its features are indicative of a very high level of metabolic activity. The hypertrophied syncytium is ensheathed by a peridermal cover in which secondary xylem and phloem elements are interspersed. When females die the syncytia degenerate. The ultrastructural and histological features of syncytia described from roots are also found in syncytia induced in aerial parts of the plant.  相似文献   

5.
Replicative senescence has a major impact on function and integrity of cell preparations. This process is reflected by continuous DNA methylation (DNAm) changes at specific CpG dinucleotides in the course of in vitro culture, and such modifications can be used to estimate the state of cellular senescence for quality control of cell preparations. Still, it is unclear how senescence‐associated DNAm changes are regulated and whether they occur simultaneously across a cell population. In this study, we analyzed global DNAm profiles of human mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) to demonstrate that senescence‐associated DNAm changes are overall similar in these different cell types. Subsequently, an Epigenetic‐Senescence‐Signature, based on six CpGs, was either analyzed by pyrosequencing or by bar‐coded bisulfite amplicon sequencing. There was a good correlation between predicted and real passage numbers in bulk populations of MSCs (R2 = 0.67) and HUVECs (R2 = 0.97). However, when we analyzed the Epigenetic‐Senescence‐Signature in subclones of MSCs, the predictions revealed high variation and they were not related to the adipogenic or osteogenic differentiation potential of the subclones. Notably, in clonally derived subpopulations, the DNAm levels of neighboring CpGs differed extensively, indicating that these genomic regions are not synchronously modified during senescence. Taken together, senescence‐associated DNAm changes occur in a highly reproducible manner, but they are not synchronously co‐regulated. They rather appear to be acquired stochastically—potentially evoked by other epigenetic modifications.  相似文献   

6.
7.
Culture of Papaver somniferum in vitro was used for a characterisation of cell surface structures and mode of cell adhesion and cell separation during cell differentiation and plant regeneration in somatic embryogenesis and shoot organogenesis. In early stages of somatic embryogenesis, cell type-specific and developmentally regulated change of cell morphogenesis was demonstrated. Cell wall of separated embryonic cells were self-covered with external tubular network, whereas morphogenetic co-ordination of adhered cells of somatic proembryos was supported by fine and fibrillar external cell wall continuum of peripheral cells, interconnecting also local sites of cell separation. Such type of cell contacts disappeared during histogenesis, when the protodermis formation took place. Tight cell adhesion of activated cells with polar cell wall thickening, and production of extent mucilage on the periphery were the crucial aspects of meristemoids. Fine amorphous layer covered developing shoot primordia, but we have not observed such comparable external fibrillar network. On the contrary intercellular separation of differentiated cells in regenerated organs, and accepting distinct developmental system of somatic embryogenesis and shoot organogenesis, cell adhesion in early stages and ultrastructural changes associated with tissue disorganisation, and the subsequent reorganisation into either embryos or shoots appear to be regulatory morphogenetical events of plant regeneration in vitro.  相似文献   

8.
Untrastructural interactions between Venturia inaequalis and callus cultures from scab susceptible and resistant apple varieties, were similar. Host cell wall changes, appositions, and invagination of host plasmamembrane at sites of close contact with fungal hyphae were regularly observed. The ultrastructural observations are described and discussed. The host cell alterations as well as many fungal structures corresponded to those known in young leaves of susceptible apple varieties.  相似文献   

9.
Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed‐linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β‐1,3 and β‐1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio‐temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence‐associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence‐associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.  相似文献   

10.
Summary We used electron microscopical techniques to study ultrastructural changes during the acquisition of embryogenic competence in immature pollen grains ofNicotiana tabacum, isolated at the early- or mid-bicellular stage and cultured in vitro under starvation conditions. Cytoplasmic and nuclear changes during the starvation treatment are reported. Dedifferentiation of plastids, dilation of the wall of the generative cell, the appearance of a large vacuole, loss of nuclear pores in the vegetative nucleus, changes in chromatin and nucleolar structure, and a decrease in the size of the nucleolus were observed. We suggest that these events are the first step in the switch from generative to vegetative generation during pollen embryogenesis.  相似文献   

11.
12.
Role of the conidium in dimorphism of Blastomyces dermatitidis   总被引:2,自引:0,他引:2  
Fine details of yeastlike cell development of Blastomyces dermatitidis from its conidium are described and illustrated by electron micrographs. When cultured in an enriched medium at 37 °C, conidia of two strains of B. dermatitidis readily underwent ultrastructural changes consistent with mycelial to yeast dimorphism. Although hyphal cells contained in the conversion cultures were observed consistently to undergo profound degenerative changes, the conidia rapidly germinated to give rise to short germ tubes which subsequently enlarged to form intermediate yeast mother cells (YMC). The wall of the germ tube arose from the innermost layer of the wall of the germinant. During the transition globoid osmiophilic inclusions of unknown origin and function were observed in vacuolated areas of the germ tube and YMC cytoplasm. Yeastlike daughter cells then budded from the intermediate YMC. Since transformation was readily accomplished under in vitro conditions favoring mycelial to yeast dimorphism, it is suggested that the conidium of B. dermatitidis represents the primary infective unit of this pathogenic fungus.  相似文献   

13.
14.
We used real-time atomic force microscopy with a temperature-controlled stage (37°C) to probe the structural and physicochemical dynamics of single Aspergillus fumigatus conidia during germination. Nanoscale topographic images of dormant spores revealed the presence of a layer of rodlets made of hydrophobins, in agreement with earlier electron microscopy observations. Within the 3-h germination period, progressive disruption of the rodlet layer was observed, revealing hydrophilic inner cell wall structures. Using adhesion force mapping with hydrophobic tips, these ultrastructural changes were shown to correlate with major differences in cell surface hydrophobicity. That is, the rodlet surface was uniformly hydrophobic due to the presence of hydrophobins, whereas the cell wall material appearing upon germination was purely hydrophilic. This study illustrates the potential of real-time atomic force microscopy imaging and force spectroscopy for tracking cell-surface dynamics.  相似文献   

15.
In asexual individuals of the green alga Volvox carteri, more than 99% of the cells are somatic cells which undergo synchronous programmed senescence and cell death every generation. Only a small number of reproductive cells survive to produce the next generation. The specific activity of pulse-labelled somatic cell protein preparations declines sharply during senescence, but no decline is seen in the nonageing reproductive cells. Two-dimensional polyacrylamide gel electrophoresis reveals that somatic and reproductive cells synthesize very different patterns of polypeptides. During the period when observable senescent changes are first evident in somatic cells, there is a change in the pattern of polypeptides being synthesized. Our results suggest that senescence in Volvox somatic cells is triggered by a change in the pattern of gene expression and are consistent with theories of programmed cell senescence.  相似文献   

16.
Changes in isoprene emission (Φisoprene), and foliage photosynthetic (A) rates, isoprene precursor dimethylallyldiphosphate (DMADP), and nitrogen and carbon contents were studied from late summer to intensive leaf fall in Populus tremula to gain insight into the emission controls by temperature and endogenous, senescence-induced, modifications. Methanol emissions, characterizing degradation of cell wall pectins, were also measured. A rapid reduction in Φisoprene and A of 60–70% of the initial value was observed in response to a rapid reduction of ambient temperature by ca. 15°C (cold stress). Later phases of senescence were associated with further reductions in Φisoprene and A, with simultaneous major decrease in nitrogen content. However, during episodes of temperature increase, A and in particular, Φisoprene partly recovered. Variation in Φisoprene during senescence was correlated with average temperature of preceding days, with the highest degree of explained variance observed with average temperature of 6 days. Throughout the study, methanol emissions were small, but a large burst of methanol emission was associated with leaf yellowing and abscission. Overall, these data demonstrate that the capacity for isoprene emission can adjust to environmental conditions in senescing leaves as well, but the responsiveness is low compared with mid-season and is also affected by stress.  相似文献   

17.
Suzina  N. E.  Mulyukin  A. L.  Loiko  N. G.  Kozlova  A. N.  Dmitriev  V. V.  Shorokhova  A. P.  Gorlenko  V. M.  Duda  V. I.  El'-Registan  G. I. 《Microbiology》2001,70(6):667-677
Under the influence of alkyl hydroxybenzene (C6-AHB) added to cell suspensions at concentrations of (1–5) × 10–3M, the cells of Saccharomyces cerevisiae, Micrococcus luteus, and Thioalkalivibrio versutusunderwent dramatic changes in the ultrastructural organization of cell membranes, cytoplasm, and inclusions. In yeast suspension, the first changes were observed after 15 min in the structure of pocket-like invaginations in the cytoplasmic membrane (CM): they were shortened and thickened. In the subsequent 30 to 60 min, CM ruptures were formed in the regions devoid of intramembrane protein particles and in the pocket-like invaginations. After 24 h, complete disintegration of the intracellular membrane structures and conglomeration of the ribosomal part of the cytoplasm occurred. Similar changes were observed on the exposure of gram-positive and gram-negative bacteria to AHB. However, the cell wall in all the microorganisms studied was not destroyed, and in Micrococcus luteusit was even thickened. These mummified forms were preserved as morphologically intact but nonviable cells for more than three years of observations. By their ultrastructural characteristics, these mummified forms of microorganisms were similar to the fossilized microorganisms discovered by us in fibrous kerite. The concept of micromummies was formulated. AHB are supposed to play an important role in the process of fossilization of microorganisms in nature.  相似文献   

18.
The effect of amphotericin B on the ultrastructure of Prototheca species   总被引:1,自引:1,他引:0  
Prototheca zopfii and Prototheca wickerhamii strains were exposed to subinhibitory concentrations of the antimycotic amphotericin B, and the effect of the treatment on their ultrastructure was assessed. The results revealed ultrastructural changes in the treated cells, expressed by swelling of mitochondria, degradation of cell organelles, accumulation of microbody like structures, lipid droplets and starch granules in the cytoplasm, and changes in the inner layer of the cell wall.  相似文献   

19.
The fine structure of the pollen grain of Tillandsia caput-medusae Morr. (Bromeliaceae) prior to germination has been studied. The development, after the first mitosis, is here schematized in three stages which are in accordance with the main steps described in angiosperms. The ultrastructural modifications occurring in the generative and vegetative cells are discussed in view of their different destiny. The results obtained are compared with the data known about tropical orchids and epiphyteic plants like Tillandsia. The following differences have been observed: a large vacuole in the vegetative cell; rapid thinning of the wall between the generative and vegetative cells; great quantity of ribosomes and rough endoplasmic reticulum surrounding the vacuoles in the generative cell. The above-listed ultrastructural features may have a meaning, considering the peculiar environmental conditions in which the epiphytism of Tillandsia is achieved.  相似文献   

20.
Homogenates of Phaseolus vulgaris cotyledons have been found capable of hydrolyzing acetylthiocholine. The hydrolysis occurs optimally at pH 8.0, and is inhibited by neostigmine but not eserine. Total activity of the enzyme increases about three-fold between the second and third days of germination, and remains high until day 6 before dropping coincident with the appearance of visible morphological symptoms of senescence in the tissue. Fractionation studies have revealed that the enzyme is enriched in preparations of purified cell wall and plasma membrane and is also present in a soluble fraction. The soluble enzyme accounts for more than 70% of the total cholinesterase activity two days after planting but by the fourth day of germination only about 30% of the total activity in the tissue is soluble. During the same period there is a large increase in the specific activities of both the cell wall and plasma membrane enzymes. By the seventh day of germination the particulate and soluble forms of the enzyme both show much reduced activities, but the specific activities of the cell wall and plasma membrane enzymes subsequently increase again. This is thought to reflect breakdown of protein other than cholinesterase in these structures as they in turn become subject to the increasing pressures of senescence. Cholinesterase in plant tissue presumably serves to regulate the endogenous titre of acetylcholine. The behaviour of this enzyme in bean cotyledons has been interpreted in terms of patterns of physiological and ultrastructural change known to characterize this tissue during germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号