首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bovine spongiform encephalopathy (BSE), a member of the prion diseases, is a fatal neurodegenerative disorder suspected to be caused by a malfunction of prion protein (PrP). Although BSE prions have been reported to be transmitted to a wide range of animal species, dogs and hamsters are known to be BSE-resistant animals. Analysis of canine and hamster PrP could elucidate the molecular mechanisms supporting the species barriers to BSE prion transmission. The structural stability of 6 mammalian PrPs, including human, cattle, mouse, hamster, dog and cat, was analyzed. We then evaluated intramolecular interactions in PrP by fragment molecular orbital (FMO) calculations. Despite similar backbone structures, the PrP side-chain orientations differed among the animal species examined. The pair interaction energies between secondary structural elements in the PrPs varied considerably, indicating that the local structural stabilities of PrP varied among the different animal species. Principal component analysis (PCA) demonstrated that different local structural stability exists in bovine PrP compared with the PrP of other animal species examined. The results of the present study suggest that differences in local structural stabilities between canine and bovine PrP link diversity in susceptibility to BSE prion infection.  相似文献   

2.
The prion responsible for the Bovine Spongiform Encephalopathy (BSE) shows unique features when compared with other prions. One of these features is its ability to infect almost all experimentally tested animal models. In the paper published in The Journal of Neuroscience1 we describe a series of experiments directed toward elucidating which would be the in vivo behavior of BSE if it would infect dogs and rabbits, two alleged prion resistant species. Protein misfolding cyclic amplification (PMCA) was used to generate canidae and leporidae in vitro adapted BSE prions. A characterization of their in vivo pathobiological properties showed that BSE prions were capable not only of adapting to new species but they maintained, in the case of rabbits, their ability to infect transgenic mice expressing human PrP. The remarkable adaptation ability of certain prions implies that any new host species could lead to the emergence of new infectious agents with unpredictable transmission potential. Our results suggest that caution must be taken when considering the use of any mammal-derived protein in feedstuffs.  相似文献   

3.
Transmissible spongiform encephalopathies (TSEs), otherwise known as prion disorders, are fatal diseases causing neurodegeneration in a wide range of mammalian hosts, including humans. The causative agents - prions - are thought to be composed of a rogue isoform of the endogenous prion protein (PrP). Beyond these and other basic concepts, fundamental questions in prion biology remain unanswered, such as the physiological function of PrP, the molecular mechanisms underlying prion pathogenesis, and the origin of prions. To date, the occurrence of TSEs in lower vertebrates like fish and birds has received only limited attention, despite the fact that these animals possess bona fide PrPs. Recent findings, however, have brought fish before the footlights of prion research. Fish models are beginning to provide useful insights into the roles of PrP in health and disease, as well as the potential risk of prion transmission between fish and mammals. Although still in its infancy, the use of fish models in TSE research could significantly improve our basic understanding of prion diseases, and also help anticipate risks to public health. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.  相似文献   

4.
Prion diseases are infectious neurodegenerative disorders that affect humans and animals and that result from the conversion of normal prion protein (PrP(C)) into the misfolded prion protein (PrP(Sc)). Chronic wasting disease (CWD) is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. Determining the risk of transmission of CWD to humans is of utmost importance, considering that people can be infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrP(C) can be converted into the misfolded form by CWD PrP(Sc), we performed experiments using the protein misfolding cyclic amplification technique, which mimics in vitro the process of prion replication. Our results show that cervid PrP(Sc) can induce the conversion of human PrP(C) but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, the newly generated human PrP(Sc) exhibits a distinct biochemical pattern that differs from that of any of the currently known forms of human PrP(Sc). Our results also have profound implications for understanding the mechanisms of the prion species barrier and indicate that the transmission barrier is a dynamic process that depends on the strain and moreover the degree of adaptation of the strain. If our findings are corroborated by infectivity assays, they will imply that CWD prions have the potential to infect humans and that this ability progressively increases with CWD spreading.  相似文献   

5.
Abstract

Considerable progress has been made deciphering the role of an abnormal isoform of the prion protein (PrP) in scrapie of animals and Gerstmann-Sträussler syndrome (GSS) of humans. Some transgenic (Tg) mouse (Mo) lines that carry and express a Syrian hamster (Ha) PrP gene developed scrapie 75 d after inoculation with Ha prions; non-Tg mice failed to show symptoms after 500 d. Brains of these infected Tg(HaPrP) mice featured protease-resistant HaPrPsc, amyloid plaques characteristic for Ha scrapie, and 109 ID50 units of Ha-specific prions upon bioassay. Studies on Syrian, Armenian, and Chinese hamsters suggest that the domain of the PrP molecule between codons 100 and 120 controls both the length of the incubation time and the deposition of PrP in amyloid plaques. Ataxic GSS in families shows genetic linkage to a mutation in the PrP gene, leading to the substitution of Leu for Pro at codon 102. Discovery of a point mutation in the Prp gene from humans with GSS established that GSS is unique among human diseases it is both genetic and infectious. These results have revised thinking about sporadic Creutzfeldt-Jakob disease, suggesting it may arise from a somatic mutation. These findings combined with those from many other studies assert that PrPsc is a component of the transmissible particle, and the PrP amino acid sequence controls the neuropathology and species specificity of prion infectivity. The precise mechanism of PrP& formation remains to be established. Attempts to demonstrate a scrapie-specific nucleic acid within highly purified preparations of prions have been unrewarding to date. Whether transmissible prions are composed only of PrPsc molecules or do they also contain a second component such as small polynucleotide remains uncertain.  相似文献   

6.
The study of prions and the discovery of candidate therapeutics for prion disease have been facilitated by the ability of prions to replicate in cultured cells. Paradigms in which prion proteins from different species are expressed in cells with low or no expression of endogenous prion protein (PrP) have expanded the range of prion strains that can be propagated. In these systems, cells stably expressing a PrP of interest are typically generated via coexpression of a selectable marker and treatment with an antibiotic. Here, we report the unexpected discovery that the aminoglycoside G418 (Geneticin) interferes with the ability of stably transfected cultured cells to become infected with prions. In G418-resistant lines of N2a or CAD5 cells, the presence of G418 reduced levels of protease-resistant PrP following challenge with the RML or 22L strains of mouse prions. G418 also interfered with the infection of cells expressing hamster PrP with the 263K strain of hamster prions. Interestingly, G418 had minimal to no effect on protease-resistant PrP levels in cells with established prion infection, arguing that G418 selectively interferes with de novo prion infection. As G418 treatment had no discernible effect on cellular PrP levels or its localization, this suggests that G418 may specifically target prion assemblies or processes involved in the earliest stages of prion infection.  相似文献   

7.
The 'protein only' hypothesis postulates that the prion, the agent causing transmissible spongiform encephalopathies, is PrP(Sc), an isoform of the host protein PrP(C). Protease treatment of prion preparations cleaves off approximately 60 N-terminal residues of PrP(Sc) but does not abrogate infectivity. Disruption of the PrP gene in the mouse abolishes susceptibility to scrapie and prion replication. We have introduced into PrP knockout mice transgenes encoding wild-type PrP or PrP lacking 26 or 49 amino-proximal amino acids which are protease susceptible in PrP(Sc). Inoculation with prions led to fatal disease, prion propagation and accumulation of PrP(Sc) in mice expressing both wild-type and truncated PrPs. Within the framework of the 'protein only' hypothesis, this means that the amino-proximal segment of PrP(C) is not required either for its susceptibility to conversion into the pathogenic, infectious form of PrP or for the generation of PrP(Sc).  相似文献   

8.
Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrPC) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrPC protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter.  相似文献   

9.
According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic'' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.  相似文献   

10.
Prions are unconventional infectious agents composed exclusively of misfolded prion protein (PrP(Sc)), which transmits the disease by propagating its abnormal conformation to the cellular prion protein (PrP(C)). A key characteristic of prions is their species barrier, by which prions from one species can only infect a limited number of other species. Here, we report the generation of infectious prions by interspecies transmission of PrP(Sc) misfolding by in vitro PMCA amplification. Hamster PrP(C) misfolded by mixing with mouse PrP(Sc) generated unique prions that were infectious to wild-type hamsters, and similar results were obtained in the opposite direction. Successive rounds of PMCA amplification result in adaptation of the in vitro-produced prions, in a process reminiscent of strain stabilization observed upon serial passage in vivo. Our results indicate that PMCA is a valuable tool for the investigation of cross-species transmission and suggest that species barrier and strain generation are determined by the propagation of PrP misfolding.  相似文献   

11.
Lichens     
《朊病毒》2013,7(1):11-16
The prion diseases sheep scrapie and cervid chronic wasting disease are transmitted, in part, via an environmental reservoir of infectivity; prions released from infected animals persist in the environment and can cause disease years later. Central to controlling disease transmission is the identification of methods capable of inactivating these agents on the landscape. We have found that certain lichens, common, ubiquitous, symbiotic organisms, possess a serine protease capable of degrading prion protein (PrP) from prion-infected animals. The protease functions against a range of prion strains from various hosts and reduces levels of abnormal PrP by at least two logs. We have now tested more than 20 lichen species from several geographical locations and from various taxa and found that approximately half of these species degrade PrP. Critical next steps include examining the effect of lichens on prion infectivity and cloning the protease responsible for PrP degradation. The impact of lichens on prions in the environment remains unknown. We speculate that lichens could have the potential to degrade prions when they are shed from infected animals onto lichens or into environments where lichens are abundant. In addition, lichens are frequently consumed by cervids and many other animals and the effect of dietary lichens on prion disease transmission should also be considered.  相似文献   

12.
Prions, the agents responsible for transmissible spongiform encephalopathies, are infectious proteins consisting primarily of scrapie prion protein (PrP(Sc)), a misfolded, β-sheet enriched and aggregated form of the host-encoded cellular prion protein (PrP(C)). Their propagation is based on an autocatalytic PrP conversion process. Despite the lack of a nucleic acid genome, different prion strains have been isolated from animal diseases. Increasing evidence supports the view that strain-specific properties may be enciphered within conformational variations of PrP(Sc). In humans, sporadic Creutzfeldt-Jakob disease (sCJD) is the most frequent form of prion diseases and has demonstrated a wide phenotypic and molecular spectrum. In contrast, variant Creutzfeldt-Jakob disease (vCJD), which results from oral exposure to the agent of bovine spongiform encephalopathy, is a highly stereotyped disease, that, until now, has only occurred in patients who are methionine homozygous at codon 129 of the PrP gene. Recent research has provided consistent evidence of strain diversity in sCJD and also, unexpectedly enough, in vCJD. Here, we discuss the puzzling biochemical/pathological diversity of human prion disorders and the relationship of that diversity to the biological properties of the agent as demonstrated by strain typing in experimental models.  相似文献   

13.
Prion is a protein-conformation-based infectious agent causing fatal neurodegenerative diseases in humans and animals. Our previous studies revealed that in the presence of cofactors, infectious prions can be synthetically generated in vitro with bacterially expressed recombinant prion protein (PrP). Once initiated, the recombinant prion is able to propagate indefinitely via serial protein misfolding cyclic amplification (sPMCA). In this study, we compared 2 separately initiated recombinant prions. Our results showed that these 2 recombinant prions had distinct biochemical properties and caused different patterns of spongiosis and PrP deposition in inoculated mice. Our findings indicate that various recombinant prions can be initiated in vitro and potential reasons for this variability are discussed.  相似文献   

14.
Individual variations in structure and morphology of amyloid fibrils produced from a single polypeptide are likely to underlie the molecular origin of prion strains and control the efficiency of the species barrier in the transmission of prions. Previously, we observed that the shape of amyloid fibrils produced from full-length prion protein (PrP 23-231) varied substantially for different batches of purified recombinant PrP. Variations in fibril morphology were also observed for different fractions that corresponded to the highly pure PrP peak collected at the last step of purification. A series of biochemical experiments revealed that the variation in fibril morphology was attributable to the presence of miniscule amounts of N-terminally truncated PrPs, where a PrP encompassing residue 31-231 was the most abundant of the truncated polypeptides. Subsequent experiments showed that the presence of small amounts of recombinant PrP 31-231 (0.1-1%) in mixtures with full-length PrP 23-231 had a dramatic impact on fibril morphology and conformation. Furthermore, the deletion of the short polybasic N-terminal region 23-30 was found to reduce the folding efficiency to the native α-helical forms and the conformational stability of α-PrP. These findings are very surprising considering that residues 23-30 are very distant from the C-terminal globular folded domain in α-PrP and from the prion folding domain in the fibrillar form. However, our studies suggest that the N-terminal polybasic region 23-30 is essential for effective folding of PrP to its native cellular conformation. This work also suggests that this region could regulate diversity of prion strains or subtypes despite its remote location from the prion folding domain.  相似文献   

15.
Prion diseases are infectious fatal neurodegenerative diseases including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. The misfolding and conversion of cellular PrP in such mammals into pathogenic PrP is believed to be the key procedure. Rabbits are among the few mammalian species that exhibit resistance to prion diseases, but little is known about the molecular mechanism underlying such resistance. Here, we report that the crowding agents Ficoll 70 and dextran 70 have different effects on fibrillization of the recombinant full-length PrPs from different species: although these agents dramatically promote fibril formation of the proteins from human and cow, they significantly inhibit fibrillization of the rabbit protein by stabilizing its native state. We also find that fibrils formed by the rabbit protein contain less β-sheet structure and more α-helix structure than those formed by the proteins from human and cow. In addition, amyloid fibrils formed by the rabbit protein do not generate a proteinase K-resistant fragment of 15–16-kDa, but those formed by the proteins from human and cow generate such proteinase K-resistant fragments. Together, these results suggest that the strong inhibition of fibrillization of the rabbit PrP by the crowded physiological environment and the absence of such a protease-resistant fragment for the rabbit protein could be two of the reasons why rabbits are resistant to prion diseases.  相似文献   

16.
While the conversion of PrPC into PrPSc in the transmissible form of prion disease requires a preexisting PrPSc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrPST), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrPST as in TgMHu2ME199K mice, and “classical” PrPSc as in infectious prion diseases, coincide in the patient''s post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.  相似文献   

17.
Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease.  相似文献   

18.
Prions are the infectious agents responsible for transmissible spongiform encephalopathy, and are primarily composed of the pathogenic form (PrP(Sc)) of the host-encoded prion protein (PrP(C)). Recent studies have revealed that protein misfolding cyclic amplification (PMCA), a highly sensitive method for PrP(Sc) detection, can overcome the species barrier in several xenogeneic combinations of PrP(Sc) seed and PrP(C) substrate. Although these findings provide valuable insight into the origin and diversity of prions, the differences between PrP(Sc) generated by interspecies PMCA and by in vivo cross-species transmission have not been described. This study investigated the histopathological and biochemical properties of PrP(Sc) in the brains of tga20 transgenic mice inoculated with Sc237 hamster scrapie prion and PrP(Sc) from mice inoculated with Sc237-derived mouse PrP(Sc), which had been generated by interspecies PMCA using Sc237 as seed and normal mouse brain homogenate as substrate. Tga20 mice overexpressing mouse PrP(C) were susceptible to Sc237 after primary transmission. PrP(Sc) in the brains of mice inoculated with Sc237-derived mouse PrP(Sc) and in the brains of mice inoculated with Sc237 differed in their lesion profiles and accumulation patterns, Western blot profiles, and denaturant resistance. In addition, these PrP(Sc) exhibited distinctive virulence profiles upon secondary passage. These results suggest that different in vivo and in vitro environments result in propagation of PrP(Sc) with different biological properties.  相似文献   

19.
The partial PrP gene sequence and the deduced protein of eight cetacean species, seven of which have never been reported so far, have been determined in order to extend knowledge of sequence variability of the PrP genes in different species and to aid in speculation on cetacean susceptibility to prions. Both the nucleotide and the deduced amino acid sequences have been analysed in comparison with some of the known mammalian PrPs. Cetacean PrPs present typical features of eutherian PrPs. The PrP gene from the species of the family Delphinidae gave identical nucleic acid sequences, while differences in the PrP gene were found in Balaenopteridae and Ziphidae. The phylogenetic tree resulting from analysis of the cetacean PrP gene sequences, together with reported sequences of some ungulates, carnivores and primates, showed that the PrP gene phylogenesis mirrors the species phylogenesis. The PrP gene of cetaceans is very close to species where natural forms of TSEs are known. From an analysis of the sequences and the phylogenesis of the PrP gene, susceptibility to or occurrence of prion diseases in cetaceans can not be excluded.  相似文献   

20.
Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrPSc), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP (CtmPrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrPSc was demonstrated in the brains of recipient transgenic mice. This PrPSc rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of CtmPrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号