首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
《朊病毒》2013,7(1):69-77
The yeast prion [PSI+] represents an aggregated state of the translational release factor Sup35 (eRF3) and deprives termination complexes of functional Sup35, resulting in nonsense codon suppression. Protein-remodeling factor Hsp104 is involved in thermotolerance and [PSI+] propagation, however the structure-and-function relationship of Hsp104 for [PSI+] remains unclear. In this study, we engineered 58 chromosomal hsp104 mutants that affect residues considered structurally or functionally relevant to Hsp104 remodeling activity, yet most remain to be examined for their significance to [PSI+] in the same genetic background. Many of these hsp104 mutants were affected both in thermotolerance and [PSI+] propagation. However, nine mutants were impaired exclusively for [PSI+], while two mutants were impaired exclusively for thermotolerance. Mutations exclusively affecting [PSI+] are clustered around the lateral channel of the Hsp104 hexamer. These findings suggest that Hsp104 possesses shared as well as distinct remodeling activities for stress-induced protein aggregates and [PSI+] prion aggregates and that the lateral channel plays a role specific to [PSI+] prion propagation.  相似文献   

3.
Douglas R. Lyke 《朊病毒》2017,11(5):332-337
Prions are misfolded, aggregated, infectious proteins found in a range of organisms from mammals to bacteria. In mammals, prion formation is difficult to study because misfolding and aggregation take place prior to symptom presentation. The study of the yeast prion [PSI+], which is the misfolded infectious form of Sup35p, provides a tractable system to monitor prion formation in real time. Recently, we showed that the de novo formation of prion aggregates begins with the appearance of highly mobile cytoplasmic foci, called early foci, which assemble into larger ring or dot structures. We also observed SDS-resistant oligomers during formation, and lysates containing newly formed oligomers can convert [psi?] cells to the [PSI+] state, suggesting that these oligomers have infectious potential. Here, we further characterize two aspects of prion formation: spatial sequestration of early foci and oligomerization of endogenous Sup35p. Our data provides important insights into the process of prion formation and explores the minimal oligomer requirement for infectivity.  相似文献   

4.
《朊病毒》2013,7(3):190-199
ABSTRACT

Yeast [PSI+] prion is one of the most suitable and well characterized system for the investigation of the prion phenomenon. However, until recently, the lack of data on the 3D arrangement of Sup35p prion fibrils hindered progress in this area. The recent arrival in this field of new experimental techniques led to the parallel and in-register superpleated β-structure as a consensus model for Sup35p fibrils. Here, we analyzed the effect of amino acid substitutions of the Sup35 protein through the prism of this structural model. Application of a newly developed computational approach, called ArchCandy, gives us a better understanding of the effect caused by mutations on the fibril forming potential of Sup35 protein. This bioinformatics tool can be used for the design of new mutations with desired modification of prion properties. Thus, we provide examples of how today, having progress toward elucidation of the structural arrangement of Sup35p fibrils, researchers can advance more efficiently to a better understanding of prion [PSI+] stability and propagation.  相似文献   

5.
《朊病毒》2013,7(4):257-265
ABSTRACT. The molecular basis by which fungal and mammalian prions arise spontaneously is poorly understood. A number of different environmental stress conditions are known to increase the frequency of yeast [PSI+] prion formation in agreement with the idea that conditions which cause protein misfolding may promote the conversion of normally soluble proteins to their amyloid forms. A recent study from our laboratory has shown that the de novo formation of the [PSI+] prion is significantly increased in yeast mutants lacking key antioxidants suggesting that endogenous reactive oxygen species are sufficient to promote prion formation. Our findings strongly implicate oxidative damage of Sup35 as an important trigger for the formation of the heritable [PSI+] prion in yeast. This review discusses the mechanisms by which the direct oxidation of Sup35 might lead to structural transitions favoring conversion to the transmissible amyloid-like form. This is analogous to various environmental factors which have been proposed to trigger misfolding of the mammalian prion protein (PrPC) into the aggregated scrapie form (PrPSc).  相似文献   

6.
7.
Chris M Grant 《朊病毒》2015,9(4):257-265
ABSTRACT. The molecular basis by which fungal and mammalian prions arise spontaneously is poorly understood. A number of different environmental stress conditions are known to increase the frequency of yeast [PSI+] prion formation in agreement with the idea that conditions which cause protein misfolding may promote the conversion of normally soluble proteins to their amyloid forms. A recent study from our laboratory has shown that the de novo formation of the [PSI+] prion is significantly increased in yeast mutants lacking key antioxidants suggesting that endogenous reactive oxygen species are sufficient to promote prion formation. Our findings strongly implicate oxidative damage of Sup35 as an important trigger for the formation of the heritable [PSI+] prion in yeast. This review discusses the mechanisms by which the direct oxidation of Sup35 might lead to structural transitions favoring conversion to the transmissible amyloid-like form. This is analogous to various environmental factors which have been proposed to trigger misfolding of the mammalian prion protein (PrPC) into the aggregated scrapie form (PrPSc).  相似文献   

8.
The cytoplasmic [PSI(+)] element of budding yeast represents the prion conformation of translation release factor Sup35. Much interest lies in understanding how prions are able to generate variation in isogenic strains. Recent observations suggest that a single prion domain, PrD, is able to adopt several conformations that account for prion strains. We report novel PrD variants of Sup35 that convert weak [PSI(+)] to strong [PSI(+)], and vice versa, upon transmission from wild-type Sup35. During the transmission from wild-type Sup35 to variant Sup35s, no conformational changes were detected by proteolytic fingerprinting and the original [PSI(+)] strain was remembered upon return to wild-type Sup35. These findings suggest that during transmission to variant Sup35s, the [PSI(+)] phenotype is variable while the original conformation is remembered. A mechanism of "conformational memory" to remember specific [PSI(+)] conformations during transmission is proposed.  相似文献   

9.
《朊病毒》2013,7(3):207-227
ABSTRACT

Prion strains are different self-propagating conformers of the same infectious protein. Three strains of the [PSI] prion, infectious forms of the yeast Sup35 protein, have been previously characterized in our laboratory. Here we report the discovery of a new [PSI] strain, named W8. We demonstrate its robust cellular propagation as well as the protein-only transmission. To reveal strain-specific sequence requirement, mutations that interfered with the propagation of W8 were identified by consecutive substitution of residues 5–55 of Sup35 by proline and insertion of glycine at alternate sites in this segment. Interestingly, propagating W8 with single mutations at residues 5–7 and around residue 43 caused the strain to transmute. In contrast to the assertion that [PSI] existed as a dynamic cloud of sub-structures, no random drift in transmission characteristics was detected in mitotically propagated W8 populations. Electron diffraction and mass-per-length measurements indicate that, similar to the 3 previously characterized strains, W8 fibers are composed of about 1 prion molecule per 4.7-Å cross-β repeat period. Thus differently folded single Sup35 molecules, not dimeric and trimeric assemblies, form the basic repeating units to build the 4 [PSI] strains.  相似文献   

10.
Zhiqiang Du  Liming Li 《Genetics》2014,197(2):685-700
The relationship between quantitative genetics and population genetics has been studied for nearly a century, almost since the existence of these two disciplines. Here we ask to what extent quantitative genetic models in which selection is assumed to operate on a polygenic trait predict adaptive fixations that may lead to footprints in the genome (selective sweeps). We study two-locus models of stabilizing selection (with and without genetic drift) by simulations and analytically. For symmetric viability selection we find that ∼16% of the trajectories may lead to fixation if the initial allele frequencies are sampled from the neutral site-frequency spectrum and the effect sizes are uniformly distributed. However, if the population is preadapted when it undergoes an environmental change (i.e., sits in one of the equilibria of the model), the fixation probability decreases dramatically. In other two-locus models with general viabilities or an optimum shift, the proportion of adaptive fixations may increase to >24%. Similarly, genetic drift leads to a higher probability of fixation. The predictions of alternative quantitative genetics models, initial conditions, and effect-size distributions are also discussed.  相似文献   

11.
The [PSI(+)] prion in yeast has been shown to improve short-term growth in some environments, but its effects on rates of adaptation have not been assessed before now. We adapted three yeast genotypes to three novel environments in the presence and the absence of the prion. There were significant differences in adaptation rates between lines with different combinations of genotype, environment, and prion status. We saw no consistent effect, however, of the prion on the rate of adaptation to new environments. A major factor affecting the rate of adaptation was initial fitness in the new environment: lines with low initial fitness evolved faster than lines with high initial fitness.  相似文献   

12.
The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI+]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI+] and [PIN+] ([RNQ+]) (Genetics, Vol. 197, 685–700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI+] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ+] or [SWI+]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI+] prion stabilizes. Our finding provides strong evidence supporting the “cross-seeding” model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.  相似文献   

13.
Klucevsek KM  Braun MA  Arndt KM 《Genetics》2012,191(4):1107-1118
The Rtf1 subunit of the Paf1 complex is required for specific histone modifications, including histone H2B lysine 123 monoubiquitylation. In Saccharomyces cerevisiae, deletion of RTF1 is lethal in the absence of Rkr1, a ubiquitin-protein ligase involved in the destruction of nonstop proteins, which arise from mRNAs lacking stop codons or translational readthrough into the poly(A) tail. We performed a transposon-based mutagenesis screen to identify suppressors of rtf1Δ rkr1Δ lethality and found that a mutation in the gene encoding the protein chaperone Hsp104 rescued viability. Hsp104 plays a role in prion propagation, including the maintenance of [PSI(+)], which contributes to the synthesis of nonstop proteins. We demonstrate that rtf1Δ and rkr1Δ are synthetically lethal only in the presence of [PSI(+)]. The deletion, inactivation, and overexpression of HSP104 or the overexpression of prion-encoding genes URE2 and LSM4 clear [PSI(+)] and rescue rtf1Δ rkr1Δ lethality. In addition, the presence of [PSI(+)] decreases the fitness of rkr1Δ strains. We investigated whether the loss of RTF1 exacerbates an overload in nonstop proteins in rkr1Δ [PSI(+)] strains but, using reporter plasmids, found that rtf1Δ decreases nonstop protein levels, indicating that excess nonstop proteins may not be the cause of synthetic lethality. Instead, our data suggest that the loss of Rtf1-dependent histone modifications increases the burden on quality control pathways in cells lacking Rkr1 and containing [PSI(+)].  相似文献   

14.
The fungal plasma membrane contains a proton-translocating ATPase that is closely related, both structurally and functionally, to the [Na+, K+]-, [H+, K+]-, and [Ca2+]-ATPases of animal cells, the plasma-membrane [H+]-ATPase of higher plants, and several bacterial cation-transporting ATPases. This review summarizes currently available information on the molecular genetics, protein structure, and reaction cycle of the fungal enzyme. Recent efforts to dissect structure-function relationships are also discussed.  相似文献   

15.
为系统研究菲啶对酵母朊病毒的治愈效果,借助表达融合蛋白GFP-Sup35p的酵母朊病毒模型(NGMC),引入半变性琼脂糖凝胶电泳技术和荧光漂白后恢复技术在蛋白和细胞水平定量分析了菲啶对酵母朊病毒的治愈效果。结果表明,蛋白和细胞水平采用的定量分析方法能够精确定量菲啶对酵母朊病毒的治愈作用,菲啶作用酵母朊病毒[PSI+]1~5 d的治愈率分别为0%、0%、51.7%、87.5%和94.4%。另外,菲啶作用酵母朊病毒[PSI+]细胞1~2 d后出现的粉色菌落中朊病毒的聚集状态与[PSI+]相似,而3~5 d后出现的粉色菌落中朊病毒的状态与[psi-]相似。  相似文献   

16.
We previously showed that over production of a fusion protein in which the prion domain of Saccharomyces cerevisiae [PSI+] is connected to glutathione S-transferase (GST-Sup35NM) causes a marked decrease in the colony forming ability of Escherichia coli strain BL21 after reaching stationary phase. Evidence indicated that the observed toxicity was attributable to intracellular formation of fibrous aggregates of GST-Sup35NM. In this report, we describe the isolation of plasmids that encode mutant forms of GST-Sup35NM which do not confer the toxicity to E. coli strain BL21. Each of the four spontaneous mutant-forms of GST-Sup35NM obtained revealed amino acid substitutions. One substitution was located in the N domain, and the others in the M domain. Congo red binding assay indicated that none of these mutant protein underwent conformational alteration in vitro. From these results, we conclude that the M domain, in collaboration with the N domain, plays an essential role in aggregation of Sup35NM. In addition, our data demonstrate the usefulness of the E. coli expression system in studying aggregate-forming proteins.  相似文献   

17.
The yeast [PSI+] prion, which is the amyloid form of Sup35, has the unusual property of being cured not only by the inactivation of, but also by the overexpression of Hsp104. Even though this latter observation was made more than two decades ago, the mechanism of curing by Hsp104 overexpression has remained controversial. This question has been investigated in depth by our laboratory by combining live cell imaging of GFP-labeled Sup35 with standard plating assays of yeast overexpressing Hsp104. We will discuss why the curing of [PSI+] by Hsp104 overexpression is not compatible with a mechanism of either inhibition of severing of the prion seeds or asymmetric segregation of the seeds. Instead, our recent data (J. Biol. Chem. 292:8630-8641) indicate that curing is due to dissolution of the prion seeds, which in turn is dependent on the trimming activity of Hsp104. This trimming activity decreases the size of the seeds by dissociating monomers from the fibers, but unlike Hsp104 severing activity, it does not increase the number of prion seeds. Finally, we will discuss the other factors that affect the curing of [PSI+] by Hsp104 overexpression and how these factors may relate to the trimming activity of Hsp104.  相似文献   

18.
Maltose phosphorylase (EC 2.4.1.8) from Lactobacillus brevis was purified 29-fold over the crude extract. The final preparation was at least 80% pure and had a specific activity of 18 units/mg protein. The molecular weights of the native enzyme and of the component dissociated in sodium dodecyl sulfate were 150,000 and 80,000, respectively. The enzyme does not contain pyridoxal-5′-phosphate as a cofactor. It can not act on maltitol, malto-triitol, sucrose, lactose and trehalose, and essentially not on isomaltose, maltobionic acid, maltotriose and maltotetraose. Inhibitory effect was observed with CuSO4, HgCl2 and p-chloromercuribenzoate. Some other properties were also examined. A possibility of using this enzyme for the analysis of maltose was proposed.  相似文献   

19.
Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.  相似文献   

20.
Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller “seeds.” Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI+] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI+] aggregates to enlarge. This is incompatible with a previously proposed “capping” model where the overexpressed Q/N-rich protein poisons, or “caps,” the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI+] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI+] aggregates in a way that blocks their shearing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号