首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Summary Vegetative incompatibility is a lethal reaction that destroys the heterokaryotic cells formed by the fusion of hyphae of non-isogenic strains in many fungi. That incompatibility is genetically determined is well known but the function of the genes triggering this rapid cell death is not. The two allelic incompatibility genes, s and S, of the fungus Podospora anserina were characterized. Both encode 30 kDa polypeptides, which differ by 14 amino acids between the two genes. These two proteins are responsible for the incompatibility reaction that results when cells containing s and S genes fuse. Inactivation of the s or S gene by disruption suppresses incompatibility but does not affect the growth or the sexual cycle of the mutant strains. This suggests that these incompatibility genes have no essential function in the life cycle of the fungus.  相似文献   

5.
14-3-3 proteins are a family of highly conserved polypeptides that function as small adaptors that facilitate a diverse array of cellular processes by binding phosphorylated target proteins. One of these processes is the regulation of the cell cycle. Here we characterized the role of Bmh1, a 14-3-3 protein, in the cell cycle regulation of the fungus Ustilago maydis. We found that this protein is essential in U. maydis and that it has roles during the G2/M transition in this organism. The function of 14-3-3 in U. maydis seems to mirror the proposed role for this protein during Schizosaccharomyces pombe cell cycle regulation. We provided evidence that in U. maydis 14-3-3 protein binds to the mitotic regulator Cdc25. Comparison of the roles of 14-3-3 during cell cycle regulation in other fungal system let us to discuss the connections between morphogenesis, cell cycle regulation and the evolutionary role of 14-3-3 proteins in fungi.  相似文献   

6.
7.
Proteasomes are large multicatalytic protease complexes which fulfil central functions in major intracellular proteolytic pathways of the eukaryotic cell. 20S proteasomes are 700 kDa cylindrically shaped particles, found in the cytoplasm and the nucleus of all eukaryotes. They are composed of a pool of 14 different subunits (MW 22–25 kDa) arranged in a stack of 4 rings with 7-fold symmetry. In the yeastSaccharomyces cerevisiae a complete set of 14 genes coding for 20S proteasome subunits have been cloned and sequenced. 26S proteasomes are even larger proteinase complexes (about 1700 kDa) which degrade ubiquitinylated proteins in an ATP-dependent fashionin vitro. The 26S proteasome is build up from the 20S proteasome as core particle and two additional 19S complexes at both ends of the 20S cylinder. Recently existence of a 26S proteasome in yeast has been demonstrated. Several 26S proteasome specific genes have been cloned and sequenced. They share similarity with a novel defined family of ATPases. 20S and 26S proteasomes are essential for functioning of the eukaryotic cell. Chromosomal deletion of 20S and 26S proteasomal genes in the yeastS. cerevisiae caused lethality of the cell. Thein vivo functions of proteasomes in major proteolytic pathways have been demonstrated by the use of 20S and 26S proteasomal mutants. Proteasomes are needed for stress dependent and ubiquitin mediated proteolysis. They are involved in the degradation of short-lived and regulatory proteins. Proteasomes are important for cell differentiation and adaptation to environmental changes. Proteasomes have also been shown to function in the control of the cell cycle.  相似文献   

8.
Zinc finger proteins (ZFPs) are one of the most abundant groups of proteins with a wide range of molecular functions. We have characterised a Toxoplasma protein that we named TgZFP2, as it bears a zinc finger domain conserved in eukaryotes. However, this protein has little homology outside this region and contains no other conserved domain that could hint for a particular function. We thus investigated TgZFP2 function by generating a conditional mutant. We showed that depletion of TgZFP2 leads to a drastic arrest in the parasite cell cycle, and complementation assays demonstrated the zinc finger domain is essential for TgZFP2 function. More precisely, whereas replication of the nuclear material is initially essentially unaltered, daughter cell budding is seriously impaired: to a large extent newly formed buds fail to incorporate nuclear material. TgZFP2 is found at the basal complex in extracellular parasites and after invasion, but as the parasites progress into cell division, it relocalises to cytoplasmic punctate structures and, strikingly, accumulates in the pericentrosomal area at the onset of daughter cell elongation. Centrosomes have emerged as major coordinators of the budding and nuclear cycles in Toxoplasma, and our study identifies a novel and important component of this machinery.  相似文献   

9.
《Epigenetics》2013,8(4):611-620
Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM). We performed NanoString analysis of GBM tumor samples and controls to identify novel therapeutic targets. Several cell proliferation assays of GBM cell lines and stem cells were used to analyze the efficacy of the drug I-BET151 relative to temozolomide (TMZ) or cell cycle inhibitors. Lastly, we performed xenograft experiments to determine the efficacy of I-BET151 in vivo. We demonstrate that BRD2 and BRD4 RNA are significantly overexpressed in GBM, suggesting that BET protein inhibition may be an effective means of reducing GBM cell proliferation. Disruption of BRD4 expression in glioblastoma cells reduced cell cycle progression. Similarly, treatment with the BET protein inhibitor I-BET151 reduced GBM cell proliferation in vitro and in vivo. I-BET151 treatment enriched cells at the G1/S cell cycle transition. Importantly, I-BET151 is as potent at inhibiting GBM cell proliferation as TMZ, the current chemotherapy treatment administered to GBM patients. Since I-BET151 inhibits GBM cell proliferation by arresting cell cycle progression, we propose that BET protein inhibition may be a viable therapeutic option for GBM patients suffering from TMZ resistant tumors.  相似文献   

10.
This review focuses on the proteins and secretions of sedentary plant parasitic nematodes potentially important for plant-nematode interactions. These nematodes are well equipped for parasitism of plants. Having acquired the ability to manipulate fundamental aspects of plant biology, they are able to hijack host-cell development to make their feeding site. They feed exclusively from feeding sites as they complete their life cycle, satisfying their nutritional demands for development and reproduction. Biochemical and genomic approaches have been used successfully to identify a number of nematode parasitism genes. So far, 65 204 expressed sequence tags (ESTs) have been generated for six Meloidogyne species and sequencing projects, currently in progress, will underpin genomic comparisons of Meloidogyne spp. with sequences of other pathogens and generate genechip microarrays to undertake profiling studies of up- and down-regulated genes during the infection process. RNA interference provides a molecular genetic tool to study gene function in parasitism. These methods should provide new data to help our understanding of how parasitic nematodes infect their hosts, leading to the identification of novel pathogenicity genes.  相似文献   

11.
Nucleostemin (NS), a member of a family of nucleolar GTP-binding proteins, is highly expressed in proliferating cells such as stem and cancer cells and is involved in the control of cell cycle progression. Both depletion and overexpression of NS result in stabilization of the tumor suppressor p53 protein in vitro. Although it has been previously suggested that NS has p53-independent functions, these to date remain unknown. Here, we report two zebrafish mutants recovered from forward and reverse genetic screens that carry loss of function mutations in two members of this nucleolar protein family, Guanine nucleotide binding-protein-like 2 (Gnl2) and Gnl3/NS. We demonstrate that these proteins are required for correct timing of cell cycle exit and subsequent neural differentiation in the brain and retina. Concomitantly, we observe aberrant expression of the cell cycle regulators cyclinD1 and p57kip2. Our models demonstrate that the loss of Gnl2 or NS induces p53 stabilization and p53-mediated apoptosis. However, the retinal differentiation defects are independent of p53 activation. Furthermore, this work demonstrates that Gnl2 and NS have both non-cell autonomously and cell-autonomous function in correct timing of cell cycle exit and neural differentiation. Finally, the data suggest that Gnl2 and NS affect cell cycle exit of neural progenitors by regulating the expression of cell cycle regulators independently of p53.  相似文献   

12.
Recommendations for naming plant pathogenesis-related proteins   总被引:20,自引:1,他引:19  
Pathogenesis-related proteins (abbreviated PRs) are defined as plant proteins that are induced in pathological or related situations. We propose a unifying nomenclature for PRs based on their grouping into families sharing amino acid sequences, serological relationship, and/or enzymatic or biological activity. The nomenclature classifies novel proteins identified by electrophoresis or chromatography along with those established by other workers. The previously proposed system of the five well-established families from tobacco is extended to accommodate a further six families. Families are indicated by arabic numerals and individual members are named by lower case letters in the order in which they are described. Additional rules are proposed to deal with forms containing more than a single polypeptide and as yet unclassified PRs. PR genes whose sequences are conserved but whose designations are not based on function are to be designated Ypr in accordance with the recommendations of the Commission on Plant Gene Nomenclature.  相似文献   

13.
Increasing evidence suggests that the eukaryotic cell cycle is controlled at several checkpoints by different members of a novel class of protein kinase, the cyclin-dependent kinases. To phosphorylate their substrates, these enzymes bind to proteins of the cyclin family--proteins that are synthesized and degraded at specific points in each cell cycle. The most well known of these kinases is the 34 kDa product of the cdc2 gene in fission yeast, p34cdc2; however, several putative cyclin-dependent kinases have now been cloned or identified. Some of these closely resemble p34cdc2. Here we review these new proteins, their potential roles in the cell cycle and the cyclins with which they may interact.  相似文献   

14.
MicroRNAs have emerged as central regulators of cellular homeostasis and increasing evidence suggests that they play a key role in neuronal plasticity. Major efforts are made to define microRNA networks and their targets in the brain. The mechanisms by which microRNA activity is regulated are, however, relatively unexplored. In this issue of The EMBO Journal, Störchel et al ( 2015 ) screened for proteins that affect microRNA function in neurons. They identify Nova1 and Ncoa3 as novel regulators of miRNA activity and demonstrate that both proteins are essential for neuronal plasticity in a microRNA‐dependent manner.  相似文献   

15.

Background

Atypical expression of cell cycle regulatory proteins has been implicated in Alzheimer's disease (AD), but the molecular mechanisms by which they induce neurodegeneration are not well understood. We examined transgenic mice expressing human amyloid precursor protein (APP) and presenilin 1 (PS1) for changes in cell cycle regulatory proteins to determine whether there is a correlation between cell cycle activation and pathology development in AD.

Results

Our studies in the AD transgenic mice show significantly higher levels of cyclin E, cyclin D1, E2F1, and P-cdc2 in the cells in the vicinity of the plaques where maximum levels of Threonine 668 (Thr668)-phosphorylated APP accumulation was observed. This suggests that the cell cycle regulatory proteins might be influencing plaque pathology by affecting APP phosphorylation. Using neuroglioma cells overexpressing APP we demonstrate that phosphorylation of APP at Thr668 is mitosis-specific. Cells undergoing mitosis show altered cellular distribution and localization of P-APP at the centrosomes. Also, Thr668 phosphorylation in mitosis correlates with increased processing of APP to generate Aβ and the C-terminal fragment of APP, which is prevented by pharmacological inhibitors of the G1/S transition.

Conclusions

The data presented here suggests that cell cycle-dependent phosphorylation of APP may affect its normal cellular function. For example, association of P-APP with the centrosome may affect spindle assembly and cell cycle progression, further contributing to the development of pathology in AD. The experiments with G1/S inhibitors suggest that cell cycle inhibition may impede the development of Alzheimer's pathology by suppressing modification of βAPP, and thus may represent a novel approach to AD treatment. Finally, the cell cycle regulated phosphorylation and processing of APP into Aβ and the C-terminal fragment suggest that these proteins may have a normal function during mitosis.  相似文献   

16.
Geminiviruses are ssDNA plant viruses that infect a wide range of crops. Since geminiviruses often infect terminally differentiated cells, they must induce cell cycle re-entry in order to replicate; until recently, only two viral proteins, the replication-associated protein Rep and the curtoviral pathogenicity factor C4, had been assigned a role in the restoration of cell competency. In a recent work, we demonstrated that C2 from Beet curly top virus activates the expression of host genes involved in DNA replication and/or control of the G2/M transition in a manner consistent with cell cycle re-entry. As expected, expression of BCTV C2 results in enhanced replication of DNA viruses. We conclude that BCTV C2 acts as a re-activator of the cell cycle in infected cells, enhancing the DNA replication competency and providing a cell environment favorable for replication of geminiviruses. Potential mechanisms for this novel function are discussed in light of our findings.KEYWORDS: Geminivirus, BCTV, curtovirus, C2, cell cycle, replication  相似文献   

17.
18.
The rod‐shaped bacterium Escherichia coli grows by insertion of peptidoglycan into the lateral wall during cell elongation and synthesis of new poles during cell division. The monofunctional transpeptidases PBP2 and PBP3 are part of specialized protein complexes called elongasome and divisome, respectively, which catalyse peptidoglycan extension and maturation. Endogenous immunolabelled PBP2 localized in the cylindrical part of the cell as well as transiently at midcell. Using the novel image analysis tool Coli‐Inspector to analyse protein localization as function of the bacterial cell age, we compared PBP2 localization with that of other E. coli cell elongation and division proteins including PBP3. Interestingly, the midcell localization of the two transpeptidases overlaps in time during the early period of divisome maturation. Försters Resonance Energy Transfer (FRET) experiments revealed an interaction between PBP2 and PBP3 when both are present at midcell. A decrease in the midcell diameter is visible after 40% of the division cycle indicating that the onset of new cell pole synthesis starts much earlier than previously identified by visual inspection. The data support a new model of the division cycle in which the elongasome and divisome interact to prepare for cell division.  相似文献   

19.
The identification of cell cycle–related genes is still a difficult task, even for organisms with relatively few genes such as the fission yeast. Several gene expression studies have been published on S. pombe showing similarities but also discrepancies in their results. We introduce a network in which the weight of each link is a function of the phase difference between the expression peaks of two genes. The analysis of the stability of the clustering through the computation of an entropy parameter reveals a structure made of four clusters, the first one corresponding to a robustly connected M–G1 component, the second to genes in the S phase, and the third and fourth to two G2 components. They are separated by bottleneck structures that appear to correspond to cell cycle checkpoints. We identify a number of genes that are located on these bottlenecks. They represent a novel group of cell cycle regulatory genes. They all show interesting functions, and they are supposed to be involved in the regulation of the transition from one phase to the next. We therefore present a comparison of the available studies on the fission yeast cell cycle and a general statistical bioinformatics methodology to find bottlenecks and gene community structures based on recent developments in network theory.  相似文献   

20.
Hydrophobins are small proteins, characterised by the presence of eight positionally conserved cysteine residues, and are present in all filamentous asco- and basidiomycetes. They are found on the outer surfaces of cell walls of hyphae and conidia, where they mediate interactions between the fungus and the environment. Hydrophobins are conventionally grouped into two classes (class I and II) according to their solubility in solvents, hydropathy profiles and spacing between the conserved cysteines. Here we describe a novel set of hydrophobins from Trichoderma spp. that deviate from this classification in their hydropathy, cysteine spacing and protein surface pattern. Phylogenetic analysis shows that they form separate clades within ascomycete class I hydrophobins. Using T. atroviride as a model, the novel hydrophobins were found to be expressed under conditions of glucose limitation and to be regulated by differential splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号