首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MEK Kinase 2 (MEKK2) is a serine/threonine kinase that functions as a MAPK kinase kinase (MAP3K) to regulate activation of Mitogen-activated Protein Kinases (MAPKs). We recently have demonstrated that ablation of MEKK2 expression in invasive breast tumor cells dramatically inhibits xenograft metastasis, but the mechanism by which MEKK2 influences metastasis-related tumor cell function is unknown. In this study, we investigate MEKK2 function and demonstrate that silencing MEKK2 expression in breast tumor cell significantly enhances cell spread area and focal adhesion stability while reducing cell migration. We show that cell attachment to the matrix proteins fibronectin or Matrigel induces MEKK2 activation and localization to focal adhesions. Further, we reveal that MEKK2 ablation enhances focal adhesion size and frequency, thereby linking MEKK2 function to focal adhesion stability. Finally, we show that MEKK2 knockdown inhibits fibronectin-induced Extracellular Signal-Regulated Kinase 5 (ERK5) signaling and Focal Adhesion Kinase (FAK) autophosphorylation. Taken together, our results strongly support a role for MEKK2 as a regulator of signaling that modulates breast tumor cell spread area and migration through control of focal adhesion stability.  相似文献   

2.
Classical mitogen-activated protein (MAP) kinases are activated by dual phosphorylation of the Thr-Xxx-Tyr motif in their activation loop, which is catalyzed by members of the MAP kinase kinase family. The atypical MAP kinases extracellular signal-regulated kinase 3 (ERK3) and ERK4 contain a single phospho-acceptor site in this segment and are not substrates of MAP kinase kinases. Previous studies have shown that ERK3 and ERK4 are phosphorylated on activation loop residue Ser-189/Ser-186, resulting in their catalytic activation. However, the identity of the protein kinase mediating this regulatory event has remained elusive. We have used an unbiased biochemical purification approach to isolate the kinase activity responsible for ERK3 Ser-189 phosphorylation. Here, we report the identification of group I p21-activated kinases (PAKs) as ERK3/ERK4 activation loop kinases. We show that group I PAKs phosphorylate ERK3 and ERK4 on Ser-189 and Ser-186, respectively, both in vitro and in vivo, and that expression of activated Rac1 augments this response. Reciprocally, silencing of PAK1/2/3 expression by RNA interference (RNAi) completely abolishes Rac1-induced Ser-189 phosphorylation of ERK3. Importantly, we demonstrate that PAK-mediated phosphorylation of ERK3/ERK4 results in their enzymatic activation and in downstream activation of MAP kinase-activated protein kinase 5 (MK5) in vivo. Our results reveal that group I PAKs act as upstream activators of ERK3 and ERK4 and unravel a novel PAK-ERK3/ERK4-MK5 signaling pathway.  相似文献   

3.
The cellular adhesion status and the exposure to soluble growth factors both contribute to mitogen-activated protein (MAP) kinase activation. To date, however, whether mitogens acting through G-protein-coupled receptors (GPCRs) need cell adhesion to activate MAP kinases/extracellular signal-regulated kinases (ERK) 1, 2 has been poorly investigated. We addressed this point in primary cultures of Sertoli cells experimentally maintained in suspension, considering that follicle-stimulating hormone (FSH) activates ERK1, 2 in attached Sertoli cells by acting through a GPCR. We found that FSH actively repressed ERK1, 2, in a cAMP-dependent but cAMP-dependent protein kinase (PKA)-independent manner, and this inhibition required the activity of a tyrosine phosphatase. In comparison, in the absence of anchorage, ERK1, 2 were still activated by epidermal growth factor, in a PKA-dependent manner. Altogether, these data suggest that sensitivity of the MAP kinase response toward cell adhesion may depend, at least in part, on the class of receptor, GPCR or receptor with tyrosine kinase activity, by which it is triggered.  相似文献   

4.
Osteoblast cells synthesize collagen‐rich ECM (extracellular matrix) in response to various environmental cues, but little is known about ECM‐dependent variations in phosphorylation patterns. Using MC3T3 E1 osteoblast‐like cells and mouse whole‐genome microarrays, we investigated molecular signalling affected by collagen‐based ECMs. A genome‐wide expression analysis revealed that cells grown in the 3D collagen matrix partially suppressed the genes associated with cell adhesion and cell cycling. Western analysis demonstrated that the expression of the active (phosphorylated) form of p130Cas, FAK (focal adhesion kinase) and ERK1/2 (extracellular‐signal‐regulated protein kinase 1/2) was reduced in cells grown in the 3D matrix. Conversely, phosphorylation of p38 MAPK (p38 mitogen‐activated protein kinase) was elevated in the 3D matrix, and its up‐regulation was linked to an increase in mRNA levels of dentin matrix protein 1 and bone sialoprotein. Although multiple characteristics such as surface topography, chemical composition and mechanical properties differ in the preparations of our collagen‐rich milieu, our observations support the notion that geometrical alterations in ECM environments can alter the phosphorylation pattern of p130Cas, FAK, ERK1/2 and p38 MAPK and lead to a differential developmental fate.  相似文献   

5.
The tumor suppressor PTEN dephosphorylates focal adhesion kinase (FAK) and inhibits integrin-mediated cell spreading and cell migration. We demonstrate here that expression of PTEN selectively inhibits activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. PTEN expression in glioblastoma cells lacking the protein resulted in inhibition of integrin-mediated MAP kinase activation. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF)- induced MAPK activation were also blocked. To determine the specific point of inhibition in the Ras/Raf/ MEK/ERK pathway, we examined these components after stimulation by fibronectin or growth factors. Shc phosphorylation and Ras activity were inhibited by expression of PTEN, whereas EGF receptor autophosphorylation was unaffected. The ability of cells to spread at normal rates was partially rescued by coexpression of constitutively activated MEK1, a downstream component of the pathway. In addition, focal contact formation was enhanced as indicated by paxillin staining. The phosphatase domain of PTEN was essential for all of these functions, because PTEN with an inactive phosphatase domain did not suppress MAP kinase or Ras activity. In contrast to its effects on ERK, PTEN expression did not affect c-Jun NH2-terminal kinase (JNK) or PDGF-stimulated Akt. Our data suggest that a general function of PTEN is to down-regulate FAK and Shc phosphorylation, Ras activity, downstream MAP kinase activation, and associated focal contact formation and cell spreading.  相似文献   

6.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) plays an important role in extracellular matrix-induced cell migration and the activation of extracellular signal-regulated kinase (ERK). We showed here that transfection of the MT1-MMP gene into HeLa cells promoted fibronectin-induced cell migration, which was accompanied by fibronectin degradation and reduction of stable focal adhesions, which function as anchors for actin-stress fibers. MT1-MMP expression attenuated integrin clustering that was induced by adhesion of cells to fibronectin. The attenuation of integrin clustering was abrogated by MT1-MMP inhibition with a synthetic MMP inhibitor, BB94. When cultured on fibronectin, HT1080 cells, which endogenously express MT1-MMP, showed so-called motile morphology with well-organized focal adhesion formation, well-oriented actin-stress fiber formation, and the lysis of fibronectin through trails of cell migration. Inhibition of endogenous MT1-MMP by BB94 treatment or expression of the MT1-MMP carboxyl-terminal domain, which negatively regulates MT1-MMP activity, resulted in the suppression of fibronectin lysis and cell migration. BB94 treatment promoted stable focal adhesion formation concomitant with enhanced phosphorylation of tyrosine 397 of focal adhesion kinase (FAK) and reduced ERK activation. These results suggest that lysis of the extracellular matrix by MT1-MMP promotes focal adhesion turnover and subsequent ERK activation, which in turn stimulates cell migration.  相似文献   

7.
Raf kinase inhibitor protein (RKIP) regulates a number of cellular processes, including cell migration. Exploring the role of RKIP in cell adhesion, we found that overexpression of RKIP in Madin-Darby canine kidney (MDCK) epithelial cells increases adhesion to the substratum, while decreasing adhesion of the cells to one another. The level of the adherens junction protein E-cadherin declines profoundly, and there is loss of normal localization of the tight junction protein ZO-1, while expression of the cell-substratum adhesion protein beta1 integrin dramatically increases. The cells also display increased adhesion and spreading on multiple substrata, including collagen, gelatin, fibronectin and laminin. In three-dimensional culture, RKIP overexpression leads to marked cell elongation and extension of long membrane protrusions into the surrounding matrix, and the cells do not form hollow cysts. RKIP-overexpressing cells generate considerably more contractile traction force than do control cells. In contrast, RNA interference-based silencing of RKIP expression results in decreased cell-substratum adhesion in both MDCK and MCF7 human breast adenocarcinoma cells. Treatment of MDCK and MCF7 cells with locostatin, a direct inhibitor of RKIP and cell migration, also reduces cell-substratum adhesion. Silencing of RKIP expression in MCF7 cells leads to a reduction in the rate of wound closure in a scratch-wound assay, although not as pronounced as that previously reported for RKIP-knockdown MDCK cells. These results suggest that RKIP has important roles in the regulation of cell adhesion, positively controlling cell-substratum adhesion while negatively controlling cell-cell adhesion, and underscore the complex functions of RKIP in cell physiology.  相似文献   

8.
NCAM140 stimulates integrin-dependent cell migration by ectodomain shedding   总被引:1,自引:0,他引:1  
The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration and synaptic plasticity. This study describes a novel function of NCAM140 in stimulating integrin-dependent cell migration. Expression of NCAM140 in rat B35 neuroblastoma cells resulted in increased migration toward the extracellular matrix proteins fibronectin, collagen IV, vitronectin, and laminin. NCAM-potentiated cell migration toward fibronectin was dependent on beta1 integrins and required extracellular-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activity. NCAM140 in B35 neuroblastoma cells was subject to ectodomain cleavage resulting in a 115 kDa soluble fragment released into the media and a 30 kDa cytoplasmic domain fragment remaining in the cell membrane. NCAM140 ectodomain cleavage was stimulated by the tyrosine phosphatase inhibitor pervanadate and inhibited by the broad spectrum metalloprotease inhibitor GM6001, characteristic of a metalloprotease. Moreover, treatment of NCAM140-B35 cells with GM6001 reduced NCAM140-stimulated cell migration toward fibronectin and increased cellular attachment to fibronectin to a small but significant extent. These results suggested that metalloprotease-induced cleavage of NCAM140 from the membrane promotes integrin- and ERK1/2-dependent cell migration to extracellular matrix proteins.  相似文献   

9.
Yan M  Cheng C  Jiang J  Liu Y  Gao Y  Guo Z  Liu H  Shen A 《Neurochemical research》2009,34(5):1002-1010
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, while the responses of Schwann cells during adhesion and migration are unknown, so we examined the expression changes of SSeCKS and F-actin in Schwann cells after exposure to fibronectin. Src (sarcoma) suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after Schwann cells adhesion and that SSeCKS increased during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we showed that Schwann cells in which SSeCKS expression was inhibited reduced cellular adhesion, spreading and promoted cellular migration on fibronectin through reorganization of actin stress fibers and blocking formation of focal adhesions. These results demonstrated SSeCKS modulate Schwann cells adhesion, spreading and migration by reorganization of the actin cytoskeleton.  相似文献   

10.
The alphavbeta3 integrin has been shown to promote cell migration through activation of intracellular signaling pathways. We describe here a novel pathway that modulates cell migration and that is activated by alphavbeta3 and, as downstream effector, by cdc2 (cdk1). We report that alphavbeta3 expression in LNCaP (beta3-LNCaP) prostate cancer cells causes increased cdc2 mRNA levels as evaluated by gene expression analysis, and increased cdc2 protein and kinase activity levels. We provide three lines of evidence that increased levels of cdc2 contribute to a motile phenotype on integrin ligands in different cell types. First, increased levels of cdc2 correlate with more motile phenotypes of cancer cells. Second, ectopic expression of cdc2 increases cell migration, whereas expression of dominant-negative cdc2 inhibits migration. Third, cdc2 inhibitors reduce cell migration without affecting cell adhesion. We also show that cdc2 increases cell migration via specific association with cyclin B2, and we unravel a novel pathway of cell motility that involves, downstream of cdc2, caldesmon. cdc2 and caldesmon are shown here to localize in membrane ruffles in motile cells. These results show that cdc2 is a downstream effector of the alphavbeta3 integrin, and that it promotes cell migration.  相似文献   

11.
The mechanisms of progesterone on endothelial cell motility are poorly investigated. Previously we showed that progesterone stimulated endothelial cell migration via the activation of actin-binding protein moesin, leading to actin cytoskeleton remodelling and the formation of cell membrane structures required for cell movement. In this study, we investigated the effects of progesterone on the formation of focal adhesion complexes, which provide anchoring sites for cell movement. In cultured human umbilical endothelial cells, progesterone enhanced focal adhesion kinase (FAK) phosphorylation at Tyr(397) in a dose- and time-dependent manner. Several signalling inhibitors interfered with progesterone-induced FAK activation, including progesterone receptor (PR) antagonist ORG 31710, specific c-Src kinase inhibitor PP2, phosphatidylinosital-3 kinase (PI3K) inhibitor wortmannin as well as ρ-associated kinase (ROCK-2) inhibitor Y27632. It suggested that PR, c-Src, PI3K and ROCK-2 are implicated in this action. In line with this, we found that progesterone rapidly promoted c-Src/PI3K/Akt activity, which activated the small GTPase RhoA/ρ-associated kinase (ROCK-2) complex, resulting in FAK phosphorylation. In the presence of progesterone, endothelial cells displayed enhanced horizontal migration, which was reversed by small interfering RNAs abrogating FAK expression. In conclusion, progesterone promotes endothelial cell movement via the rapid regulation of FAK. These findings provide new information on the biological actions of progesterone on human endothelial cells that are relevant for vascular function.  相似文献   

12.
Chen H  Bai J  Ye J  Liu Z  Chen R  Mao W  Li A  Zhou J 《Cellular signalling》2007,19(6):1315-1327
Mitogen activated protein kinase (MAPK) cascades are thought to mediate diverse biological functions such as cell growth, differentiation and migration. Activated MAPK may affect microtubule (MT) which is essential for cellular polarity, differentiation and motility. Data in this study show that JWA, a newly identified novel microtubule-associated protein (MAP) was essential for the rearrangement of F-actin cytoskeleton and activation of MAPK cascades induced by arsenic trioxide (As2O3) and phorbol ester (PMA). Over-expression of JWA alone in HeLa, B16 and HCCLM3 cancer cells effectively inhibited cellular migration; whereas, cellular migration was significantly accelerated when cells were deficient in JWA expression. The mechanism underlying these phenomena might be due to JWA affected F-actin rearrangement. Furthermore, JWA deficiency blocked anti-migratory effect produced by As2O3 but enhanced the migratory effect initiated by PMA in HeLa cells. JWA SDR-SLR motifs are not only critical for the MAPK cascades activation, but also for cell migration. Further studies found that JWA differentially regulated cell migration via ERK downstream effectors focal adhesion kinase (FAK) and cyclooxygenase-2 (COX-2). Therefore, JWA regulated-tumor cellular migration might involve MAPK cascades activation and F-actin cytoskeleton rearrangement mechanisms. Our data provide an unexpected role for JWA in tumor cell migration behaviors.  相似文献   

13.
Protein-tyrosine kinase 6 (PTK6) is a non-myristoylated intracellular tyrosine kinase evolutionarily related to Src kinases. Aberrant PTK6 expression and intracellular localization have been detected in human prostate tumors. In the PC3 prostate cancer cell line, the pool of endogenous activated PTK6, which is phosphorylated on tyrosine residue 342, is localized at the membrane. Expression of ectopic membrane-targeted PTK6 led to dramatic morphology changes and formation of peripheral adhesion complexes in PC3 cells. Peripheral adhesion complex formation was dependent upon PTK6 kinase activity. We demonstrated that p130 CRK-associated substrate (p130CAS) is a novel direct substrate of PTK6, and it works as a crucial adapter protein in inducing peripheral adhesion complexes. Activation of ERK5 downstream of p130CAS was indispensable for this process. Knockdown of endogenous PTK6 led to reduced cell migration and p130CAS phosphorylation, whereas knockdown of p130CAS attenuated oncogenic signaling induced by membrane-targeted PTK6, including ERK5 and AKT activation. Expression of membrane-targeted PTK6 promoted cell migration, which could be impaired by knockdown of p130CAS or ERK5. Our study reveals a novel function for PTK6 at the plasma membrane and suggests that the PTK6-p130CAS-ERK5 signaling cascade plays an important role in cancer cell migration and invasion.  相似文献   

14.
Urokinase-type plasminogen activator (uPA) activates the mitogen activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) 1 and 2, in diverse cell types. In this study, we demonstrate that uPA stimulates migration of MCF-7 breast cancer cells, HT 1080 fibrosarcoma cells, and uPAR-overexpressing MCF-7 cells by a mechanism that depends on uPA receptor (uPAR)-ligation and ERK activation. Ras and MAP kinase kinase (MEK) were necessary and sufficient for uPA-induced ERK activation and stimulation of cellular migration, as demonstrated in experiments with dominant-negative and constitutively active mutants of these signaling proteins. Myosin light chain kinase (MLCK) was also required for uPA-stimulated cellular migration, as determined in experiments with three separate MLCK inhibitors. When MCF-7 cells were treated with uPA, MLCK was phosphorylated by a MEK-dependent pathway and apparently activated, since serine-phosphorylation of myosin II regulatory light chain (RLC) was also increased. Despite the transient nature of ERK phosphorylation, MLCK remained phosphorylated for at least 6 h. The uPA-induced increase in MCF-7 cell migration was observed selectively on vitronectin-coated surfaces and was mediated by a beta1-integrin (probably alphaVbeta1) and alphaVbeta5. When MCF-7 cells were transfected to express alphaVbeta3 and treated with uPA, ERK was still phosphorylated; however, the cells did not demonstrate increased migration. Neutralizing the function of alphaVbeta3, with blocking antibody, restored the ability of uPA to promote cellular migration. Thus, we have demonstrated that uPA promotes cellular migration, in an integrin-selective manner, by initiating a uPAR-dependent signaling cascade in which Ras, MEK, ERK, and MLCK serve as essential downstream effectors.  相似文献   

15.
Mitogen-activated protein kinase (MAPK) cascades are the major signaling systems transducing extracellular signals into intracellular responses, which mainly include the extracellular signal-regulated kinase (ERK) pathway, the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) pathway, and the p38 pathway. From dendritic cell cDNA library, we isolated a full-length cDNA encoding a potentially novel 898-residue kinase, which was designated DPK. The protein contained a potential kinase domain at the N-terminal exhibiting homology with MEKK1-, MEKK2-, MEKK3-, MEKK4-, MEKK5-, Tpl-2-, and p21-activated kinases (PAKs), but no GTPase-binding domain which is characteristic of PAKs. Northern blotting analysis showed that DPK was ubiquitously expressed in normal tissues, with abundant expression in kidney, skeletal muscle, heart, and liver. When overexpressed in transfected NIH3T3 cells, it could activate both the ERK1/ERK2 pathway and the SAPK pathway in a dose-dependent manner, but not affect the p38 pathway. These findings suggested that DPK might be a novel candidate MAPKKK.  相似文献   

16.
ERK is activated by soluble growth factors in adherent cells. However, activation of ERK is barely detectable and not sufficient for cell proliferation in non-adherent cells. Here, we show that exogenous expression of vinexin beta, a novel focal adhesion protein, allows anchorage-independent ERK2 activation stimulated by epidermal growth factor. In contrast, expression of vinexin beta had no effect on ERK2 activation in adherent cells, suggesting that vinexin beta regulates the anchorage dependence of ERK2 activation. Analyses using deletion mutants demonstrated that a linker region between the second and third SH3 domains of vinexin beta, but not the SH3 domains, is required for this function of vinexin beta. To evaluate the pathway regulating the anchorage dependence of ERK2 activation, we used a dominant-negative mutant of p21-activated kinase (PAK) and a specific inhibitor (H89) of cAMP-dependent protein kinase (PKA) because PAK and PKA are known to regulate the anchorage dependence of ERK2 activation. The dominant-negative mutant of PAK suppressed the anchorage-independent ERK2 activation induced by expression of vinexin beta. The dominant-negative mutant of vinexin beta inhibited the anchorage-independent ERK2 activation induced by the PKA inhibitor. Together, these observations indicate that vinexin beta plays a key role in regulating the anchorage dependence of ERK2 activation through PKA-PAK signaling.  相似文献   

17.
Recently, we have shown that autocrine transforming growth factor-alpha (TGF-alpha) controls the expression of integrin alpha2, cell adhesion to collagen IV and motility in highly progressed HCT116 colon cancer cells (Sawhney, R. S., Zhou, G-H. K., Humphrey, L. E., Ghosh, P., Kreisberg, J. I., and Brattain, M. G. (2002) J. Biol. Chem. 277, 75-86). We now report that expression of basal integrin alpha2 and its biological effects are controlled by constitutive activation of the extracellular signal-regulated/mitogen-activated protein kinase (ERK/MAPK) pathway. Treatment of cells with selective mitogen-activated protein kinase kinase (MEK) inhibitors PD098059 and U0126 showed that integrin alpha2 expression, cell adhesion, and activation of ERK are inhibited in a parallel concentration-dependent fashion. Moreover, autocrine TGF-alpha-mediated epidermal growth factor receptor activation was shown to control the constitutive activation of the ERK/MAPK pathway, since neutralizing antibody to the epidermal growth factor receptor was able to block basal ERK activity. TGF-alpha antisense-transfected cells also showed attenuated activation of ERK. Using a real time electric cell impedance sensing technique, it was shown that ERK-dependent integrin alpha2-mediated cell micromotion signaling is controlled by autocrine TGF-alpha. Thus, this study implicates ERK/MAPK signaling activated by endogenous TGF-alpha as one of the mechanistic features controlling metastatic spread.  相似文献   

18.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that α1β1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of α1β1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-α1 or anti-β1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked α1β1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of α1β1 integrin. These results suggested that ERK1/2 activation is critical for the α1β1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   

19.
Oral squamous cell carcinoma (OSCC) has a striking tendency to migrate and metastasize. Cysteine-rich 61 (Cyr61), from the CCN gene family, is a secreted and matrix-associated protein, which is involved in many cellular activities such as growth and differentiation. However, the effects of Cyr61 on human OSCC cells are largely unknown. In this study, we found that Cyr61 increased the migration and the expression of matrix metalloproteinases-3 (MMP)-3 in human OSCC cells. αvβ5 or α6β1 monoclonal antibody (mAb), focal adhesion kinase (FAK) inhibitor, and mitogen-activated protein kinase (MEK) inhibitors (PD98059 and U0126) inhibited the Cyr61-induced increase of the migration and MMP-3 up-regulation of OSCC cells. Cyr61 stimulation increased the phosphorylation of FAK, MEK, and extracellular signal-regulated kinase (ERK). In addition, NF-κB inhibitors suppressed the cell migration and MMP-3 expression enhanced by Cyr61. Moreover, Cyr61 increased NF-κB luciferase activity and binding of p65 to the NF-κB element on the MMP-3 promoter. Taken together, our results indicate that Cyr61 enhances the migration of OSCC cells by increasing MMP-3 expression through the αvβ3 or α6β1 integrin receptor, FAK, MEK, ERK, and NF-κB signal transduction pathway.  相似文献   

20.
Met and EGF receptors can induce a decrease in intercellular adhesion and an increase in cell motility, which is a cause of metastatic progressions. Therefore, mechanisms of interaction in receptor tyrosine kinase and proteins of intercellular contacts attract the attention of researchers. The main protein that provides cellular adhesion is E-cadherin. Earlier, we have shown that the intracellular Met localization was dependent on function of E-cadherin. In the present work, we have found that localization of the EGF receptor also was determined by adhesion stability. Loss of intercellular contacts in HBL-100 cells leads to the EGF receptor being not stabilized at the cell membrane. A comparative study of MAP kinase activation by growth factors was carried out in cells differing by their intercellular adhesion states. It has been established that E-cadherin is able to modulate level and duration of activation of ERK kinase. The presented results allow for the suggestion to be made that not only intracellular localization, but also the intracellular signal pathway activated by Met and EGF receptors, depend on the E-cadherin function, which in turn can determine the specificity of cellular response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号