首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tumor necrosis factor receptor-associated factors (TRAFs) belong to a family of intracellular adaptor proteins that mediate signaling downstream of various cell surface receptors. We carried out comparative in situ hybridization analysis of five Traf genes Traf1, Traf2, Traf3, Traf4 and Traf6 during murine odontogenesis from the formation of the epithelial thickening to the early bell stage. Traf2, Traf3 and Traf6 showed weak expression in the thickened epithelium. Expression of Traf1, Traf2 and Traf6 were observed in the outer edges of the bud epithelium whereas Traf3 was strongly expressed at the tip of the bud epithelium. Expression of Traf1, Traf4 and Traf6 were detected in the dental papilla mesenchyme. Traf2 showed restricted expression in the internal enamel epithelium of the bell stage while expression of Traf1, Traf3, Traf4 and Traf6 were observed in both the internal and the external enamel epithelium. During early odontogenesis, all five genes show dynamic spatiotemporal expression patterns.  相似文献   

2.
Abstract

Regeneration in macroalgae: an approach to studies of morphogenesis and correlation growth effects. - Seaweed regeneration is a rather spread survival strategy as a response to wounds which injure the plant integrity. In laboratory, the regeneration ability of algal segments provides suitable means for studying thallus growth and bud differentiation and for hypothesizing mechanisms of hormonal regulation of morphogenesis. Moreover, the most known correlation growth effects, i.e. polarity, apical dominance and apico-basal gradients, can be investigated. In this report the author describes and discuss some experimental results relating to these subjects.  相似文献   

3.
Abstract

Studies on cell polarity proteins and planar cell polarity (PCP) proteins date back to almost 40?years ago in Drosophila and C. elegans when these proteins were shown to be crucial to support apico-basal polarity and also directional alignment of polarity cells across the plane of an epithelium during morphogenesis. In adult mammals, cell polarity and PCP are most notable in cochlear hair cells. However, the role of these two groups of proteins to support spermatogenesis was not explored until a decade earlier when several proteins that confer cell polarity and PCP proteins were identified in the rat testis. Since then, there are several reports appearing in the literature to examine the role of both cell polarity and PCP in supporting spermatogenesis. Herein, we provide an overview regarding the role of cell polarity and PCP proteins in the testis, evaluating these findings in light of studies in other mammalian epithelial cells/tissues. Our goal is to provide a timely evaluation of these findings, and provide some thought provoking remarks to guide future studies based on an evolving concept in the field.  相似文献   

4.
Tumor necrosis factor superfamily ligands provoke a dilated cardiac phenotype signal through a common scaffolding protein termed tumor necrosis factor receptor-associated factor 2 (Traf2); however, Traf2 signaling in the adult mammalian cardiac hypertrophy is not fully understood. This study was aimed to identify the effect of Traf2 on cardiac hypertrophy and the underlying mechanisms. A significant up-regulation of Traf2 expression was observed in mice failing hearts. To further investigate the role of Traf2 in cardiac hypertrophy, we used cultured neonatal rat cardiomyocytes with gain and loss of Traf2 function and cardiac-specific Traf2-overexpressing transgenic (TG) mice. In cultured cardiomyocytes, Traf2 positively regulated angiotensin II (Ang II)-mediated hypertrophic growth, as detected by [3H]-Leucine incorporation, cardiac myocyte area, and hypertrophic marker protein levels. Cardiac hypertrophy in vivo was produced by constriction of transverse aortic (TAC) in TG mice and their wild-type controls. The extent of cardiac hypertrophy was evaluated by echocardiography as well as by pathological and molecular analyses of heart samples. Traf2 overexpression in the heart remarkably enhanced cardiac hypertrophy, left ventricular dysfunction in mice in response to TAC. Further analysis of the signaling pathway in vitro and in vivo suggested that these adverse effects of Traf2 were associated with the activation of AKT/glycogen synthase kinase 3β (GSK3β). The present study demonstrates that Traf2 serves as a novel mediator that enhanced cardiac hypertrophy by activating AKT/GSK3β signaling.  相似文献   

5.
The intercalation of mesenchymal cells into epithelia, through mesenchymal-to-epithelial transition (MET), underlies organogenesis, for example, in nephrogenesis, and tissue regeneration, during cell renewal and wound repair. Despite its importance, surprisingly little is known about the mechanisms that bring about MET in comparison with the related and much-studied, reverse process, epithelial-to-mesenchymal transition (EMT). We analyse the molecular events that regulate MET as stellate cells integrate into the established epithelium of the developing renal tubules in Drosophila. We show that stellate cells polarise as they integrate between epithelial principal cells and that the normal, localised expression of cell polarity proteins in principal cells is required for stellate cells to become epithelial. While the basolateral and apical membranes act as cues for stellate cell polarity, adherens junction integrity is required to regulate their movement through the epithelium; in the absence of these junctions stellate cells continue migrating into the tubule lumen. We also show that expression of basolateral proteins in stellate cells is a prerequisite for their ingression between principal cells. We present a model in which the contacts with successive principal cell membrane domains made by stellate cells as they integrate between them act as a cue for the elaboration of stellate cell polarity. We suggest that the formation of zonula adherens junctions between new cell neighbours establishes their apico-basal positions and stabilises them in the epithelium.  相似文献   

6.
7.
In homozygous mutants of Drosophila lethal-2-giant larvae (lgl), tissues lose apico-basal cell polarity and exhibit ectopic proliferation. Here, we use clonal analysis in the developing eye to investigate the effect of lgl null mutations in the context of surrounding wild-type tissue. lgl clones in the larval eye disc exhibit ectopic expression of the G1-S regulator, Cyclin E, and ectopic proliferation, but do not lose apico-basal cell polarity. Decreasing the perdurance of Lgl protein in larval eye disc clones, by forcing extra proliferation of lgl tissue (using a Minute background), leads to a loss in cell polarity and to more extreme ectopic cell proliferation. Later in development at the pupal stage, lgl mutant photoreceptor cells show aberrant apico-basal cell polarity, but this is not associated with ectopic proliferation, presumably because cells are differentiated. Thus in a clonal context, the ectopic proliferation and cell polarity defects of lgl mutants are separable. Furthermore, lgl mosaic eye discs have alterations in the normal patterns of apoptosis: in larval discs some lgl and wild-type cells at the clonal boundary undergo apoptosis and are excluded from the epithelia, but apoptosis is decreased elsewhere in the disc, and in pupal retinas lgl tissue shows less apoptosis.  相似文献   

8.
Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical–basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena. Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.  相似文献   

9.
10.
Oda-Ishii I  Ishii Y  Mikawa T 《PloS one》2010,5(10):e13689

Background

The notochord is a signaling center required for the patterning of the vertebrate embryic midline, however, the molecular and cellular mechanisms involved in the formation of this essential embryonic tissue remain unclear. The urochordate Ciona intestinalis develops a simple notochord from 40 specific postmitotic mesodermal cells. The precursors intercalate mediolaterally and establish a single array of disk-shaped notochord cells along the midline. However, the role that notochord precursor polarization, particularly along the dorsoventral axis, plays in this morphogenetic process remains poorly understood.

Methodology/Principal Findings

Here we show that the notochord preferentially accumulates an apical cell polarity marker, aPKC, ventrally and a basement membrane marker, laminin, dorsally. This asymmetric accumulation of apicobasal cell polarity markers along the embryonic dorsoventral axis was sustained in notochord precursors during convergence and extension. Further, of several members of the Eph gene family implicated in cellular and tissue morphogenesis, only Ci-Eph4 was predominantly expressed in the notochord throughout cell intercalation. Introduction of a dominant-negative Ci-Eph4 to notochord precursors diminished asymmetric accumulation of apicobasal cell polarity markers, leading to defective intercalation. In contrast, misexpression of a dominant-negative mutant of a planar cell polarity gene Dishevelled preserved asymmetric accumulation of aPKC and laminin in notochord precursors, although their intercalation was incomplete.

Conclusions/Significance

Our data support a model in which in ascidian embryos Eph-dependent dorsoventral polarity of notochord precursors plays a crucial role in mediolateral cell intercalation and is required for proper notochord morphogenesis.  相似文献   

11.
The formation of functional epithelial tissues involves the coordinated action of several protein complexes, which together produce a cell polarity axis and develop cell-cell junctions. During the last decade, the notion of polarity complexes emerged as the result of genetic studies in which a set of genes was discovered first in Caenorhabditis elegans and then in Drosophila melanogaster. In epithelial cells, these complexes are responsible for the development of the apico-basal axis and for the construction and maintenance of apical junctions. In this review, we focus on apical polarity complexes, namely the PAR3/PAR6/aPKC complex and the CRUMBS/PALS1/PATJ complex, which are conserved between species and along with a lateral complex, the SCRIBBLE/DLG/LGL complex, are crucial to the formation of apical junctions such as tight junctions in mammalian epithelial cells. The exact mechanisms underlying their tight junction construction and maintenance activities are poorly understood, and it is proposed to focus in this review on establishing how these apical polarity complexes might regulate epithelial cell morphogenesis and functions. In particular, we will present the latest findings on how these complexes regulate epithelial homeostasis.  相似文献   

12.
The retinal pigment epithelium (RPE) forms a monolayer sheet separating the retina and choroid in vertebrate eyes. The polarized nature of RPE is maintained by distributing membrane proteins differentially along apico-basal axis. We found the distributions of these proteins differ in embryonic, post-natal, and mature mouse RPE, suggesting developmental regulation of protein trafficking. Thus, we deleted tumor susceptibility gene 101 (Tsg101), a key component of endosomal sorting complexes required for transport (ESCRT), in embryonic and mature RPE to determine whether ESCRT-mediated endocytic protein trafficking correlated with the establishment and maintenance of RPE polarity. Loss of Tsg101 severely disturbed the polarity of RPE, which forms irregular aggregates exhibiting non-polarized distribution of cell adhesion proteins and activation of epidermal growth factor receptor signaling. These findings suggest that ESCRT-mediated protein trafficking is essential for the development and maintenance of RPE cell polarity.  相似文献   

13.
14.
Formation of apico-basal polarity in epithelial cells is crucial for both morphogenesis (e.g., cyst formation) and function (e.g., tight junction development). Atypical protein kinase C (aPKC), complexed with Par6, is considered to translocate to the apical membrane and function in epithelial cell polarization. However, the mechanism for translocation of the Par6–aPKC complex has remained largely unknown. Here, we show that the WD40 protein Morg1 (mitogen-activated protein kinase organizer 1) directly binds to Par6 and thus facilitates apical targeting of Par6–aPKC in Madin-Darby canine kidney epithelial cells. Morg1 also interacts with the apical transmembrane protein Crumbs3 to promote Par6–aPKC binding to Crumbs3, which is reinforced with the apically localized small GTPase Cdc42. Depletion of Morg1 disrupted both tight junction development in monolayer culture and cyst formation in three-dimensional culture; apico-basal polarity was notably restored by forced targeting of aPKC to the apical surface. Thus, Par6–aPKC recruitment to the premature apical membrane appears to be required for definition of apical identity of epithelial cells.  相似文献   

15.
Fine-tuning of host cell responses to commensal bacteria plays a crucial role in maintaining homeostasis of the gut. Here, we show that tumor necrosis factor receptor-associated factor (Traf)2(-/-) mice spontaneously developed severe colitis and succumbed within 3 weeks after birth. Histological analysis revealed that apoptosis of colonic epithelial cells was enhanced, and B cells diffusely infiltrated into the submucosal layer of the colon of Traf2(-/-) mice. Expression of proinflammatory cytokines, including Tnfa, Il17a, and Ifng, was up-regulated, whereas expression of antimicrobial peptides was down-regulated in the colon of Traf2(-/-) mice. Moreover, a number of IL-17-producing helper T cells were increased in the colonic lamina propria of Traf2(-/-) mice. These cellular alterations resulted in drastic changes in the colonic microbiota of Traf2(-/-) mice compared with Traf2(+/+) mice. Treatment of Traf2(-/-) mice with antibiotics ameliorated colitis along with down-regulation of proinflammatory cytokines and prolonged survival, suggesting that the altered colonic microbiota might contribute to exacerbation of colitis. Finally, deletion of Tnfr1, but not Il17a, dramatically ameliorated colitis in Traf2(-/-) mice by preventing apoptosis of colonic epithelial cells, down-regulation of proinflammatory cytokines, and restoration of wild-type commensal bacteria. Together, TRAF2 plays a crucial role in controlling homeostasis of the colon.  相似文献   

16.
The evolutionary conserved transmembrane protein Crumbs (Crb) regulates morphogenesis of photoreceptor cells in the compound eye of Drosophila and prevents light-dependent retinal degeneration. Here we examine the role of Crb in the ocelli, the simple eyes of Drosophila. We show that Crb is expressed in ocellar photoreceptor cells, where it defines a stalk membrane apical to the adherens junctions, similar as in photoreceptor cells of the compound eyes. Loss of function of crb disrupts polarity of ocellar photoreceptor cells, and results in mislocalisation of adherens junction proteins. This phenotype is more severe than that observed in mutant photoreceptor cells of the compound eye, and resembles more that of embryonic epithelia lacking crb. Similar as in compound eyes, crb protects ocellar photoreceptors from light induced degeneration, a function that depends on the extracellular portion of the Crb protein. Our data demonstrate that the function of crb in photoreceptor development and homeostasis is conserved in compound eyes and ocelli and underscores the evolutionarily relationship between these visual sense organs of Drosophila. The data will be discussed with respect to the difference in apico-basal organisation of these two cell types.  相似文献   

17.

Background

Formation of apical compartments underlies the morphogenesis of most epithelial organs during development. The extracellular matrix (ECM), particularly the basement membrane (BM), plays an important role in orienting the apico-basal polarity and thereby the positioning of apical lumens. Integrins have been recognized as essential mediators of matrix-derived polarity signals. The importance of β1-integrins in epithelial polarization is well established but the significance of the accompanying α-subunits have not been analyzed in detail.

Principal Findings

Here we demonstrate that two distinct integrin-dependent pathways regulate formation of apical lumens to ensure robust apical membrane biogenesis under different microenvironmental conditions; 1) α2β1- and α6β4-integrins were required to establish a basal cue that depends on Rac1-activity and guides apico-basal cell polarization. 2) α3β1-integrins were implicated in positioning of mitotic spindles in cysts, a process that is essential for Cdc42-driven epithelial hollowing.

Significance

Identification of the separate processes driven by particular integrin receptors clarifies the functional hierarchies between the different integrins co-expressed in epithelial cells and provides valuable insight into the complexity of cell-ECM interactions thereby guiding future studies addressing the molecular basis of epithelial morphogenesis during development and disease.  相似文献   

18.
Maintenance of apico-basal polarity is essential for epithelial integrity and requires particular reinforcement during tissue morphogenesis, when cells are reorganised, undergo shape changes and remodel their junctions. It is well established that epithelial integrity during morphogenetic processes depends on the dynamic exchange of adherens junction components, but our knowledge on the dynamics of other proteins and their dynamics during these processes is still limited. The early Drosophila embryo is an ideal system to study membrane dynamics during morphogenesis. Here, morphogenetic activities differ along the anterior-posterior axis, with the extending germband showing a high degree of epithelial remodelling. We developed a Fluorescence Recovery After Photobleaching (FRAP) assay with a higher temporal resolution, which allowed the distinction between a fast and a slow component of recovery of membrane proteins during the germband extension stage. We show for the first time that the recovery kinetics of a general membrane marker, SpiderGFP, differs in the anterior and posterior parts of the embryo, which correlates well with the different morphogenetic activities of the respective embryonic regions. Interestingly, absence of crumbs, a polarity regulator essential for epithelial integrity in the Drosophila embryo, decreases the fast component of SpiderGFP and of the apical marker Stranded at Second-Venus specifically in the anterior region. We suggest that the defects in kinetics observed in crumbs mutant embryos are the first signs of tissue instability in this region, explaining the earlier breakdown of the head epidermis in comparison to that of the trunk, and that diffusion in the plasma membrane is affected by the absence of Crumbs.  相似文献   

19.
The critical regulator of polarity, Par6, is a key member of a multi-component polarity complex that controls a variety of cellular processes such as asymmetric cell division, establishment of epithelial apico-basal polarity, and polarized cell migration. Recently, we have come to understand how regulation of the Par6 interactome by extracellular cues such as integrin and transforming growth factor beta signalling regulates cell motility and tight junction dissolution. These studies have begun to elucidate how signalling to the polarity complex might regulate pathological processes such as tumour cell invasion and metastasis.  相似文献   

20.
Dorsal and ventral specification in the early optic vesicle plays a crucial role in vertebrate ocular morphogenesis, and proper dorsal‐ventral polarity in the optic vesicle ensures that distinct structures develop in separate domains within the eye primordium. The polarity is determined progressively during development by coordinated regulation of extraocular dorsal and ventral factors. In the present study, we cultured discrete portions of embryonic chick brains by preparing anterior cephalon, anterior dorsal cephalon and anterior ventral cephalon, and clearly demonstrate that bone morphogenetic protein 4 (BMP4) and Sonic hedgehog (Shh) constitute a dorsal‐ventral signaling system together with fibroblast growth factor 8 (FGF8). BMP4 and Shh upregulate Tbx5 and Pax2, as reported previously, and at the same time Shh downregulates Tbx5, while BMP4 affects Pax2 expression to downregulate similarly. Shh induces Fgf8 expression in the ventral optic vesicle. This, in turn, determines the distinct boundary of the retinal pigmented epithelium and the neural retina by suppressing Mitf expression. The lens develops only when signals from both the dorsal and ventral regions come across together. Inverted deposition of Shh and BMP4 signals in organ‐cultured optic vesicle completely re‐organized ocular structures to be inverted. Based on these observations we propose a novel model in which the two signals govern the whole of ocular development when they encounter each other in the ocular morphogenic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号