首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The accumulation of protein aggregates in neurons appears to be a basic feature of neurodegenerative disease. In huntington disease (HD), a progressive and ultimately fatal neurodegenerative disorder caused by an expansion of the polyglutamine repeat within the protein huntingtin (Htt), the immediate proximal cause of disease is well understood. However, the cellular mechanisms which modulate the rate at which fragments of Htt containing polyglutamine accumulate in neurons is a central issue in the development of approaches to modulate the rate and extent of neuronal loss in this disease. We have recently found that Htt is phosphorylated by the kinase IKK on serine (s) 13, activating its phosphorylation on S16 and its acetylation and poly-SUMOylation, modifications that modulate its clearance by the proteasome and lysosome in cells.1 In the discussion here I suggest that Htt may have a normal function in the lysosomal mechanism of selective macroautophagy involved in its own degradation which may share some similarity with the yeast cytoplasm to vacuole targeting (Cvt) pathway. Pharmacologic activation of this pathway may be useful early in disease progression to treat HD and other neurodegenerative diseases characterized by the accumulation of disease proteins.Key words: Huntington disease, Huntingtin, polyglutamine, autophagy, IKKAn age-related reduction in protein clearance mechanisms has been implicated in the pathogenesis of neurodegenerative diseases including the polyglutamine (polyQ) repeat diseases, Alzheimer disease (AD), Parkinson disease (PD) and Amyotrophic Lateral Sclerosis (ALS). These diseases are each associated with the accumulation of insoluble protein aggregates in diseased neurons. Huntington Disease (HD), caused by an expansion of the polyQ repeat in the protein Huntingtin (Htt), is one such disease of aging in which mutant Htt inclusions form in striatal and cortical neurons as disease progresses. Clarification of the mechanisms of Htt clearance is paramount to finding therapeutic targets to treat HD that may be broadly useful in the treatment of these currently incurable neurodegenerative diseases.  相似文献   

2.
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by expended CAG repeats in the Huntingtin (Htt) gene. The resultant mutant Htt (mHtt) forms aggregates in neurons and causes neuronal dysfunctions. The major characteristic of HD is the selective loss of neurons in the striatum and cortex, which leads to movement disorders, dementia, and eventual death. Expression of mHtt was also found in non-neuronal cells in the brain, suggesting non-cell-autonomous neurotoxicity in HD. As was documented in many different neurodegenerative disorders, elevated inflammatory responses are also reported in HD. To date, effective treatments for this devastating disease remain to be developed. This review focuses on the importance of glial cells and inflammation in HD pathogenesis. Potential anti-inflammatory interventions for HD are also discussed.  相似文献   

3.

Background

In several neurodegenerative disorders, toxic effects of glial cells on neurons are implicated. However the generality of the non-cell autonomous pathologies derived from glial cells has not been established, and the specificity among different neurodegenerative disorders remains unknown.

Methodology/Principal Findings

We newly generated Drosophila models expressing human mutant huntingtin (hHtt103Q) or ataxin-1 (hAtx1-82Q) in the glial cell lineage at different stages of differentiation, and analyzed their morphological and behavioral phenotypes. To express hHtt103Q and hAtx1-82Q, we used 2 different Gal4 drivers, gcm-Gal4 and repo-Gal4. Gcm-Gal4 is known to be a neuroglioblast/glioblast-specific driver whose effect is limited to development. Repo-Gal4 is known to be a pan-glial driver and the expression starts at glioblasts and continues after terminal differentiation. Gcm-Gal4-induced hHtt103Q was more toxic than repo-Gal4-induced hHtt103Q from the aspects of development, locomotive activity and survival of flies. When hAtx1-82Q was expressed by gcm- or repo-Gal4 driver, no fly became adult. Interestingly, the head and brain sizes were markedly reduced in a part of pupae expressing hAtx1-82Q under the control of gcm-Gal4, and these pupae showed extreme destruction of the brain structure. The other pupae expressing hAtx1-82Q also showed brain shrinkage and abnormal connections of neurons. These results suggested that expression of polyQ proteins in neuroglioblasts provided a remarkable effect on the developmental and adult brains, and that glial cell lineage expression of hAtx1-82Q was more toxic than that of hHtt103Q in our assays.

Conclusion/Significance

All these studies suggested that the non-cell autonomous effect of glial cells might be a common pathology shared by multiple neurodegenerative disorders. In addition, the fly models would be available for analyzing molecular pathologies and developing novel therapeutics against the non-cell autonomous polyQ pathology. In conclusion, our novel fly models have extended the non-cell autonomous pathology hypothesis as well as the developmental effect hypothesis to multiple polyQ diseases. The two pathologies might be generally shared in neurodegeneration.  相似文献   

4.
Weiss KR  Kimura Y  Lee WC  Littleton JT 《Genetics》2012,190(2):581-600
Huntington's disease is a neurodegenerative disorder resulting from expansion of a polyglutamine tract in the Huntingtin protein. Mutant Huntingtin forms intracellular aggregates within neurons, although it is unclear whether aggregates or more soluble forms of the protein represent the pathogenic species. To examine the link between aggregation and neurodegeneration, we generated Drosophila melanogaster transgenic strains expressing fluorescently tagged human huntingtin encoding pathogenic (Q138) or nonpathogenic (Q15) proteins, allowing in vivo imaging of Huntingtin expression and aggregation in live animals. Neuronal expression of pathogenic Huntingtin leads to pharate adult lethality, accompanied by formation of large aggregates within the cytoplasm of neuronal cell bodies and neurites. Live imaging and Fluorescence Recovery After Photobleaching (FRAP) analysis of pathogenic Huntingtin demonstrated that new aggregates can form in neurons within 12 hr, while preexisting aggregates rapidly accumulate new Huntingtin protein within minutes. To examine the role of aggregates in pathology, we conducted haplo-insufficiency suppressor screens for Huntingtin-Q138 aggregation or Huntingtin-Q138-induced lethality, using deficiencies covering ~80% of the Drosophila genome. We identified two classes of interacting suppressors in our screen: those that rescue viability while decreasing Huntingtin expression and aggregation and those that rescue viability without disrupting Huntingtin aggregation. The most robust suppressors reduced both soluble and aggregated Huntingtin levels, suggesting toxicity is likely to be associated with both forms of the mutant protein in Huntington's disease.  相似文献   

5.
The accumulation of protein aggregates in neurons appears to be a basic feature of neurodegenerative disease. In Huntington's Disease, a progressive and ultimately fatal neurodegenerative disorder caused by an expansion of the polyglutamine repeat within the protein Huntingtin (Htt), the immediate proximal cause of disease is well understood. However, the cellular mechanisms which modulate the rate at which fragments of Htt containing polyglutamine accumulate in neurons is a central issue in the development of approaches to modulate the rate and extent of neuronal loss in this disease.  相似文献   

6.
7.
Huntington's disease (HD) is a fatal neurodegenerative disorder causing selective neuronal death in the brain. Dysfunction of the ubiquitin–proteasome system may contribute to the disease; however, the exact mechanisms are still unknown. We report here a new pathological mechanism by which mutant huntingtin specifically interferes with the degradation of β‐catenin. Huntingtin associates with the β‐catenin destruction complex that ensures its equilibrated degradation. The binding of β‐catenin to the destruction complex is altered in HD, leading to the toxic stabilization of β‐catenin. As a consequence, the β‐transducin repeat‐containing protein (β‐TrCP) rescues polyglutamine (polyQ)‐huntingtin‐induced toxicity in striatal neurons and in a Drosophila model of HD, through the specific degradation of β‐catenin. Finally, the non‐steroidal anti‐inflammatory drug indomethacin that decreases β‐catenin levels has a neuroprotective effect in a neuronal model of HD and in Drosophila and increases the lifespan of HD flies. We thus suggest that restoring β‐catenin homeostasis in HD is of therapeutic interest.  相似文献   

8.
Huntington disease (HD) is an inherited neurodegenerative disorder caused by a polyglutamine (polyQ) expansion in the huntingtin (Htt) gene. Despite years of research, there is no treatment that extends life for patients with the disorder. Similarly, little is known about which cellular pathways that are altered by pathogenic Huntingtin (Htt) protein expression are correlated with neuronal loss. As part of a longstanding effort to gain insights into HD pathology, we have been studying the protein in the context of the fruitfly Drosophila melanogaster. We generated transgenic HD models in Drosophila by engineering flies that carry a 12-exon fragment of the human Htt gene with or without the toxic trinucleotide repeat expansion. We also created variants with a monomeric red fluorescent protein (mRFP) tag fused to Htt that allows in vivo imaging of Htt protein localization and aggregation. While wild-type Htt remains diffuse throughout the cytoplasm of cells, pathogenic Htt forms insoluble aggregates that accumulate in neuronal soma and axons. Aggregates can physically block transport of numerous organelles along the axon. We have also observed that aggregates are formed quickly, within just a few hours of mutant Htt expression. To explore mechanisms of neurodegeneration in our HD model, we performed in vivo and in vitro screens to search for modifiers of viability and pathogenic Htt aggregation. Our results identified several novel candidates for HD therapeutics that can now be tested in mammalian models of HD. Furthermore, these experiments have highlighted the complex relationship between aggregates and toxicity that exists in HD.  相似文献   

9.
Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases.  相似文献   

10.
The mechanisms of intercellular spreading of amyloidogenic proteins involved in neurodegenerative diseases have yet to be fully elucidated. While secretion has been implicated in the transfer of many proteins, including prions and α-synuclein, tunneling nanotubes (TNTs) have also been demonstrated for prions and mutant Huntingtin. Here, we provide further evidence that Tau aggregates, which have been demonstrated to predominantly be transferred via secretion, can also be found in TNTs. Additionally, cells that have taken up Tau have increased TNT formation. Coupled with previous evidence that other amyloidogenic aggregates also induce TNT formation we propose that misfolded protein aggregates can, through a common mechanism, promote the formation of TNTs and thereby their own intercellular transfer, contributing to the propagation of pathology.  相似文献   

11.

Background

Glutamate released by activated microglia induces excitotoxic neuronal death, which likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases, including amyotrophic lateral sclerosis and Alzheimer''s disease. Although both blockade of glutamate receptors and inhibition of microglial activation are the therapeutic candidates for these neurodegenerative diseases, glutamate receptor blockers also perturbed physiological and essential glutamate signals, and inhibitors of microglial activation suppressed both neurotoxic/neuroprotective roles of microglia and hardly affected disease progression. We previously demonstrated that activated microglia release a large amount of glutamate specifically through gap junction hemichannel. Hence, blockade of gap junction hemichannel may be potentially beneficial in treatment of neurodegenerative diseases.

Methods and Findings

In this study, we generated a novel blood-brain barrier permeable gap junction hemichannel blocker based on glycyrrhetinic acid. We found that pharmacologic blockade of gap junction hemichannel inhibited excessive glutamate release from activated microglia in vitro and in vivo without producing notable toxicity. Blocking gap junction hemichannel significantly suppressed neuronal loss of the spinal cord and extended survival in transgenic mice carrying human superoxide dismutase 1 with G93A or G37R mutation as an amyotrophic lateral sclerosis mouse model. Moreover, blockade of gap junction hemichannel also significantly improved memory impairments without altering amyloid β deposition in double transgenic mice expressing human amyloid precursor protein with K595N and M596L mutations and presenilin 1 with A264E mutation as an Alzheimer''s disease mouse model.

Conclusions

Our results suggest that gap junction hemichannel blockers may represent a new therapeutic strategy to target neurotoxic microglia specifically and prevent microglia-mediated neuronal death in various neurodegenerative diseases.  相似文献   

12.
Caspase activation and apoptotic events may take place in terminal regions far removed from the cell body and contribute to synapse loss in neurodegenerative diseases. For examination of events in terminals, we have developed a cell-free assay using quantitative flow cytometric analysis (fluorescence-activated cell sorting) of neuronal particles in a P2 synaptosomal preparation (P-2) from rat brain as a model system. Staurosporine-induced loss of neuronal particles was blocked by nonselective caspase inhibition (z-VAD-fmk) and by calpain inhibition (calpain inhibitor II [ALLM]). Phosphatidylserine exposure was increased in the P-2 by staurosporine treatment, and this increase was blocked by a peptide inhibitor of caspase-3–like activity (Ac-DEVD-CHO). Increased caspase activity in the crude synaptosomal fraction was confirmed by direct measurement with a fluorometric assay. These results indicate activation of both caspase and calpain in the P-2 fraction and suggest a role for these cysteine proteases in the in vitro degradation of nerve terminals.  相似文献   

13.
Huntington??s disease (HD) is one of the most common dominantly-inherited neurodegenerative disorders and is caused by a CAG repeat expansion in the huntingtin gene. HD is characterized by selective degeneration of subpopulations of neurons in the brain, however the precise underlying mechanisms how a ubiquitously expressed disease protein could target specific types of neurons for degeneration remains a critical, yet unanswered question for HD and other major neurodegenerative disorders. In this review, we describe the expanding view of selective neuronal vulnerability in HD, based on recent neuropathological and neuroimaging studies. We will also summarize the systematic effort to define the cell types in which mutant Huntingtin expression is critical for pathogenesis of vulnerable neurons in the striatum and cortex. Finally, we will describe selected, emerging molecular mechanisms that are implicated in selective disease processes in HD. Together, the field has begun to appreciate the distinct molecular pathogenic roles of mutant huntingtin in different cell types that may contribute to the selective neuronal vulnerability, with dissection of such mechanisms likely to yield novel molecular targets for HD therapy.  相似文献   

14.
《朊病毒》2013,7(2):134-141
Chronic mental diseases (CMD) like the schizophrenias are progressive diseases of heterogenous but poorly understood biological origin. An imbalance in proteostasis is a hallmark of dysfunctional neurons, leading to impaired clearance and abnormal deposition of protein aggregates. Thus, it can be hypothesized that unbalanced proteostasis in such neurons may also lead to protein aggregates in schizophrenia. These protein aggregates, however, would be more subtle then in the classical neurodegenerative diseases and as such have not yet been detected. The DISC1 (Disrupted-in-schizophrenia 1) gene is considered among the most promising candidate genes for CMD having been identified as linked to CMD in a Scottish pedigree and having since been found to associate to various phenotypes of CMD. We have recently demonstrated increased insoluble DISC1 protein in the cingular cortex in approximately 20% of cases of CMD within the widely used Stanley Medical Research Institute Consortium Collection. Surprisingly, in vitro, DISC1 aggregates were cell-invasive, i.e., purified aggresomes or recombinant DISC1 fragments where internalized at an efficiency comparable to that of α-synuclein. Intracellular DISC1 aggresomes acquired gain-of-function properties in recruiting otherwise soluble proteins such as the candidate schizophrenia protein dysbindin. Disease-associated DISC1 polymorphism S704C led to a higher oligomerization tendency of DISC1. These findings justify classification of DISC1-dependent brain disorders as protein conformational disorders which we have tentatively termed DISC1opathies. The notion of disturbed proteostasis and protein aggregation as a mechanism of mental diseases is thus emerging. The yet unidentified form of neuronal impairment in CMD is more subtle than in the classical neurodegenerative diseases without leading to massive cell death and as such present a different kind of neuronal dysfunctionality, eventually confined to highly selective CNS subpopulations.  相似文献   

15.
16.
Glutamate-induced excito-neurotoxicity likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases. Microglial clearance of dying neurons and associated debris is essential to maintain healthy neural networks in the central nervous system. In fact, the functions of microglia are regulated by various signaling molecules that are produced as neurons degenerate. Here, we show that the soluble CX3C chemokine fractalkine (sFKN), which is secreted from neurons that have been damaged by glutamate, promotes microglial phagocytosis of neuronal debris through release of milk fat globule-EGF factor 8, a mediator of apoptotic cell clearance. In addition, sFKN induces the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in microglia in the absence of neurotoxic molecule production, including NO, TNF, and glutamate. sFKN treatment of primary neuron-microglia co-cultures significantly attenuated glutamate-induced neuronal cell death. Using several specific MAPK inhibitors, we found that sFKN-induced heme oxygenase-1 expression was primarily mediated by activation of JNK and nuclear factor erythroid 2-related factor 2. These results suggest that sFKN secreted from glutamate-damaged neurons provides both phagocytotic and neuroprotective signals.  相似文献   

17.
Transactive response DNA binding protein 43 (TDP-43) pathologies have been well recognized in various neurodegenerative disorders including frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and Alzheimer’s disease (AD). However, there have been limited studies on whether there are any TDP-43 alterations in normal aging. We investigated TDP-43 distribution in different brain regions in normal aged (n =3 for 26- or 36-month-old) compared to young (n =3 for 6- or 12-month-old) mice. In both normal aged and young mice, TDP-43 and phosphorylated TDP-43 (pTDP-43) demonstrated a unique pattern of distribution in neurons in some specific brain regions including the pontine nuclei, thalamus, CA3 region of the hippocampus, and orbital cortex. This pattern was demonstrated on higher magnification of high-resolution double fluorescence images and confocal microscopy as mislocalization of TDP-43 and pTDP-43, characterized by neuronal nuclear depletion and cytoplasmic accumulation in these brain regions, as well as colocalization between TDP-43 or pTDP-43 and mitochondria, similar to what has been described previously in neurodegenerative disorders. All these findings were identical in both normal aged and young mice. In summary, TDP-43 and pTDP-43 mislocalization from nucleus to cytoplasm and their colocalization with mitochondria in the specific brain regions are present not only in aging, but also in young healthy states. Our findings provide a new insight for the role of TDP-43 proteinopathy in health and diseases, and that aging may not be a critical factor for the development of TDP-43 proteinopathy in subpopulations of neurons.Impact statementDespite increasing evidence implicating the important role of TDP-43 in the pathogenesis of a wide range of age-related neurodegenerative diseases, there is limited study of TDP-43 proteinopathy and its association with mitochondria during normal aging. Our findings of cytoplasmic accumulation of TDP-43 that is highly colocalized with mitochondria in neurons in selective brain regions in young animals in the absence of neuronal loss provide a novel insight into the development of TDP-43 proteinopathy and its contribution to neuronal loss.  相似文献   

18.
19.
BACKGROUND: There is growing evidence of apoptosis in neurodegenerative disease. However, it is still unclear whether the pathological manifestations observed in slow neurodegenerative diseases are due to neuronal loss or whether they are related to independent degenerative events in the axodendritic network. It also remains elusive whether a single, caspase-based executing system involving caspases is responsible for neuronal loss by apoptosis. MATERIALS AND METHODS: Long-term exposure to the microtubule-disassembling agent, colchicine, was used to disrupt the axodendritic network and eventually trigger caspase-3-mediated apoptosis in cultures of cerebellar granule cells. For this model, we investigated the role of Bcl-2 and caspases in neurite degeneration and death of neuronal somata. RESULTS: Early degeneration of the axodendritic network occurred by a Bcl-2 and caspase-independent mechanism. Conversely, apoptosis of the cell body was delayed by Bcl-2 and initially blocked by caspase inhibition. However, when caspase activity was entirely blocked by zVAD-fmk, colchicine-exposed neurons still underwent delayed cell death characterized by cytochrome c release, chromatin condensation to irregularly shaped clumps, DNA-fragmentation, and exposure of phosphatidylserine. Inhibitors of the proteasome reduced these caspase-independent apoptotic-like features of the neuronal soma. CONCLUSION: Our data suggest that Bcl-2-dependent and caspase-mediated death programs account only partially for neurodegenerative changes in injured neurons. Blockage of the caspase execution machinery may only temporarily rescue damaged neurons and classical apoptotic features can still appear in caspase-inhibited neurons.  相似文献   

20.
Many current studies of Parkinson's disease (PD) suggest that inflammation is involved in the neurodegenerative process. PD‐1, a traditional Korean medicine, used to treat various brain diseases in Korea. This study was designed to investigate the effect of PD‐1 extract in the Parkinson's model of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP) lesioned mice. The MPTP administration caused the dopamine neuron loss in the striatum and substantia nigra pars compacta (SNpc), which was demonstrated by a depletion of tyrosine hydroxylase (TH). In addition, a reduction of bcl‐2 expression with elevation of bax expression, caspase‐3 activation, and release of cytochrome c into cytosol in dopaminergic neurons of SNpc were noted. Oral administration of PD‐1 extract (50 and 100 mg kg?1) attenuated the MPTP‐induced depletion of TH proteins in the striatum and SNpc and prevented the apoptotic effects. These results indicate that PD‐1 extract is able to protect dopaminergic neurons from MPTP‐induced neuronal death, with important implications for the treatment of PD. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号