首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.  相似文献   

2.
Abstract

Members of the class B1 family of G-protein coupled receptors (GPCRs) whose ligands are neuropeptides have been implicated in regulation of circadian rhythms and sleep in diverse metazoan clades. This review discusses the cellular and molecular mechanisms by which class B1 GPCRs, especially the mammalian VPAC2 receptor and its functional homologue PDFR in Drosophila and C. elegans, regulate arousal and daily rhythms of sleep and wake. There are remarkable parallels in the cellular and molecular roles played by class B1 intercellular signaling pathways in coordinating arousal and circadian timekeeping across multiple cells and tissues in these very different genetic model organisms.  相似文献   

3.
Sohn J  Rudolph J 《Biophysical chemistry》2007,125(2-3):549-555
Using a combination of steady-state and single-turnover kinetics, we probe the temperature dependence of substrate association and chemistry for the reaction of Cdc25B phosphatase with its Cdk2-pTpY/CycA protein substrate. The transition state for substrate association is dominated by an enthalpic barrier (DeltaH(++) of 13 kcal/mol) and has a favorable entropic contribution of 4 kcal/mol at 298 K. Phosphate transfer from Cdk2-pTpY/CycA to enzyme (DeltaH(++) of 12 kcal/mol) is enthalpically more favorable than for the small molecule substrate p-nitrophenyl phosphate (DeltaH(++) of 18 kcal/mol), yet entropically less favorable (TDeltaS(++) of 2 vs. -6 kcal/mol at 298 K, respectively). By measuring the temperature dependence of binding and catalysis for several hotspot mutants involved in binding of protein substrate, we determine the enthalpy-entropy compensations for changes in rates of association and phosphate transfer compared to the wild type system. We conclude that the transition state for enzyme-substrate association involves tight and specific contacts at the remote docking site and that phospho-transfer from Cdk2-pTpY/CycA to the pre-organized active site of the enzyme is accompanied by unfavorable entropic rearrangements that promote rapid product dissociation.  相似文献   

4.
Drosophila melanogaster Meigen mutants for N‐β‐alanyldopamine (NBAD) metabolism have altered levels of NBAD, dopamine and other neurotransmitters. The ebony1 mutant strain has very low levels of NBAD and higher levels of dopamine, whereas the opposite situation is observed in the tan1 mutant. Dopamine is implicated in the control of movement, memory and arousal, as well as in the regulation of sleep and wakefulness in D. melanogaster. N‐β‐alanyldopamine, which is best known as a cuticle cross‐linking agent, is also present in nervous tissue and has been proposed to promote locomotor activity in this fly. The daily locomotor activity and the sleep patterns of ebony1 and tan1 mutants are analyzed, and are compared with wild‐type flies. The tan1 mutant shows reduced locomotor activity, whereas ebony1 shows higher levels of activity than wild‐type flies, suggesting that NBAD does not promote locomotor activity. Both mutants spend less time asleep than wild‐type flies during night‐time; ebony shows more consolidated activity during night‐time and increased sleep latency, whereas tan is unable to consolidate locomotor activity and sleep in either phase of the day. The daily level of NBAD‐synthase activity is measured in vitro using wild‐type and tan1 protein extracts, and the lowest NBAD synthesis is observed at the time of higher locomotor activity. The abnormalities in several parameters of the waking/sleep cycle indicate some dysfunction in the processes that regulates these behaviours in both mutants.  相似文献   

5.
M Wilborn  S Free  A Ban  J Rudolph 《Biochemistry》2001,40(47):14200-14206
Cdc25 is a dual-specificity phosphatase that catalyzes the activation of the cyclin-dependent kinases (Cdk/cyclins), thus triggering initiation and progression of successive phases of the cell cycle. In our efforts to elucidate the interaction between Cdc25B and the natural substrate, bis-phosphorylated Cdk2/CycA (Cdk2-pTpY/CycA), we have previously found that the 17 residues of the C-terminal tail mediate a factor of 10 in substrate recognition. In the studies reported here, we localize the majority of this interaction using site-directed mutagenesis to two arginine residues (Arg556 and Arg562) located within this C-terminal region. We also show that the catalytic domain of Cdc25C, which differs most significantly from Cdc25B in this tail region, has a 100-fold lower activity toward Cdk2-pTpY/CycA. We further demonstrate that the proper presentation of the C-terminal tail of Cdc25B can be achieved in a "gain-of-function" chimeric protein consisting of the C-terminal tail of Cdc25B fused onto the catalytic core of Cdc25C. The >10-fold increase in activity seen only in the chimeric protein containing the two critical arginine residues demonstrates that the modular C-terminal tail of Cdc25B is the basis for most of the catalytic advantage of Cdc25B versus Cdc25C toward the Cdk2-pTpY/CycA substrate.  相似文献   

6.
The hydrophobic patch of cyclins interacts with cyclin-dependent kinase (Cdk) substrates and p27-type Cdk inhibitors. Although this interaction is assumed to contribute to the specificity of different Cdk-Cyclin complexes, its role in specific steps of the cell cycle has not been demonstrated. Here, we show that in Drosophila the mitotic inhibitor Frühstart (Frs) binds specifically and with high affinity to the hydrophobic patch of cyclins. In contrast to p27-type Cdk inhibitors, Frs does not form a stable interaction with the catalytic centre of Cdk and allows phosphorylation of generic model substrates, such as histone H1. Consistent with a 2.5 times stronger binding to CycA than to CycE in vitro, ectopic expression of frs induces endocycles, in a manner similar to that reported previously for downregulation of CycA or Cdk1. We propose that binding of Frs to cyclins blocks the hydrophobic patch to interfere with Cdk1 substrate recognition.  相似文献   

7.
Sohn J  Buhrman G  Rudolph J 《Biochemistry》2007,46(3):807-818
Using a combination of steady-state and single-turnover kinetics, we probe substrate association, dissociation, and chemistry for the reaction of Cdc25B phosphatase with its Cdk2-pTpY/CycA protein substrate. The rate constant for substrate association for the wild-type enzyme is 1.3 x 10(6) M(-1) s(-1). The rate constant for dissociation is slow compared to the rate constant for phosphate transfer to form the phospho-enzyme intermediate (k2 = 1.1 s(-1)), making Cdk2-pTpY/CycA a sticky substrate. Compared to the wild type, all hotspot mutants of residues at the remote docking site that specifically affect catalysis with the protein substrate (Arg488, Arg492, and Tyr497 on Cdc25B and Asp206 on Cdk2) have greatly slowed rate constants of association (70- to 4500-fold), and some mutants have decreased k2 values compared to that of the wild type. Most dramatically, R492L, despite showing no significant changes in a crystal structure at 2.0 A resolution, has an approximately 100-fold decrease in k2 compared to that of wild-type Cdc25B. The active site C473S mutant binds tightly to and dissociates slowly from Cdk2-pTpY/CycA (Kd = 10 nM, k(off) = 0.01 s(-1)). In contrast, the C473D mutant, despite showing only localized perturbations in the active site at 1.6 A resolution, has a much weaker affinity and dissociates rapidly (Kd of 2 microM, k(off) > 2 s(-1)) from the protein substrate. Overall, we demonstrate that the association of Cdc25B with its Cdk2-pTpY/CycA substrate is governed to a significant extent by the interactions of the remote hotspot residues, whereas dissociation is governed by interactions at the active site.  相似文献   

8.
F-box proteins: more than baits for the SCF?   总被引:1,自引:0,他引:1  
Progression through the mammalian cell cycle is associated with the activity of four cyclin dependent kinases (Cdc2/Cdk1, Cdk2, Cdk4, and Cdk6). Knockout mouse models have provided insight into the interplay of these Cdks. Most of these models do not exhibit major cell cycle defects revealing redundancies, and suggesting that a single Cdk might be sufficient to drive the cell cycle, similar as in yeast. Recent work on Cdk2/Cdk4 double knockouts has indicated that these two Cdks are required to phosphorylate Rb during late embryogenesis. The lack of Rb phosphorylation is progressive and associated with reduced E2F-inducible gene expression. Cdk2 and Cdk4 share the essential function of coupling the G1/S transition with mitosis. However, proliferation in early embryogenesis appears to be independent of Cdk2 and Cdk4. We discuss these observations and propose molecular mechanisms that establish the requirement for Cdk2 and Cdk4 at the G1/S transition. We are considering that the balance between proliferation and differentiation is disturbed, which affects especially heart development and leads to embryonic lethality in Cdk2 -/- Cdk4 -/- mutants. We also discuss the specific functions of Cdk4 and Cdk6, which ironically do not compensate for each other.  相似文献   

9.
《Fly》2013,7(3):140-147
ABSTRACT

Cell cycle checkpoints prevent mitosis from occurring before DNA replication and repair are completed during S and G2 phases. The checkpoint mechanism involves inhibitory phosphorylation of Cdk1, a conserved kinase that regulates the onset of mitosis. Metazoans have two distinct Cdk1 inhibitory kinases with specialized developmental functions: Wee1 and Myt1. Ayeni et al used transgenic Cdk1 phospho-acceptor mutants to analyze how the distinct biochemical properties of these kinases affected their functions. They concluded from their results that phosphorylation of Cdk1 on Y15 was necessary and sufficient for G2/M checkpoint arrest in imaginal wing discs, whereas phosphorylation on T14 promoted chromosome stability by a different mechanism. A curious relationship was also noted between Y15 inhibitory phosphorylation and T161 activating phosphorylation. These unexpected complexities in Cdk1 inhibitory phosphorylation demonstrate that the checkpoint mechanism is not a simple binary “off/on” switch, but has at least three distinct states: “Ready”, to prevent chromosome damage and apoptosis, “Set”, for developmentally regulated G2 phase arrest, and “Go”, when Cdc25 phosphatases remove inhibitory phosphates to trigger Cdk1 activation at the G2/M transition.  相似文献   

10.
11.
The glycogen synthase kinase-3 homolog, Mck1, has been implicated in many cellular functions, from sporulation to calcium stress response in budding yeast. Here, we report a novel function for Mck1 in the inhibition of Clb2-Cdk1 activity post nuclear division. Clb2-Cdk1, the major mitotic cyclin-Cdk complex in yeast, accumulates before anaphase and must be inhibited in telophase for cells to exit mitosis and enter into the next cell cycle. We show that the mck1Δ mutant is highly sensitive to increased Clb2-Cdk1 activity caused either by overexpression of Clb2 or the Cdk1-activating phosphatase Mih1. Deletion of the Cdk1 inhibitory kinase, SWE1, in combination with a mck1Δ mutant results in a synthetic growth defect, suggesting that Mck1 and Swe1 function in parallel pathways to inhibit Clb2-Cdk1. We find that mck1Δ strains have a delay in mitotic exit as well as elevated levels of Clb2-Cdk1 activity post-nuclear division. Using a co-immunoprecipitation assay, we identify a physical interaction between Mck1 and both Clb2 and Mih1. Finally, we demonstrate that phosphorylation of purified Clb2 by Cdk1 is inhibited by catalytically active Mck1 but not catalytically inactive Mck1 in vitro. We propose that Mck1 inhibits the activity of Clb2-Cdk1 via interaction with Clb2. The mammalian glycogen synthase kinase-3 homolog has been implicated in cyclin inhibition, suggesting a conserved cell cycle function for both yeast and mammalian glycogen synthase kinases.  相似文献   

12.
13.
Exit from mitosis requires Cdk1 inactivation, with the most prominent mechanism of Cdk1 inactivation being proteolysis of mitotic cyclins [1]. In higher eukaryotes this involves sequential destruction of A- and B-type cyclins. CycA is destroyed first, and CycA/Cdk1 inactivation is required for the metaphase-to-anaphase transition [2]. The degradation of CycA is delayed in response to DNA damage but is not prevented when the spindle checkpoint is activated [3, 4]. Cyclin destruction is thought to be mediated by a conserved motif, the destruction box (D box). Like B-type cyclins, A-type cyclins contain putative destruction box sequences in their N termini [5]. However, no detailed in vivo analysis of the sequence requirements for CycA destruction has been described so far. Here we tested several mutations in the CycA coding region for destruction in Drosophila embryos. We show that D box sequences are not essential for mitotic destruction of CycA. Destruction is mediated by at least three different elements that act in an overlapping fashion to mediate its mitotic degradation.  相似文献   

14.
15.
16.
The Dictyostelium discoideum homolog of mammalian cyclin dependent kinase 5 (Cdk5) has previously been shown to be required for optimal growth and differentiation in this model organism, however, the subcellular localization of the protein has not previously been studied. In this study, immunolocalizations and a GFP fusion construct localized Cdk5 predominantly to the nucleus of vegetative cells. Western blots showed that Cdk5 was present in both nuclear and non-nuclear fractions, suggesting a functional role in both cellular locales. During the early stages of mitosis, Cdk5 gradually moved from a punctate nucleoplasmic distribution to localize adjacent to the inner nuclear envelope. During anaphase and telophase, Cdk5 localized to the cytoplasm and was not detected in the nucleoplasm. Cdk5 returned to the nucleus during cytokinesis. Proteolytic activity has been shown to be a critical regulator of the cell cycle. Immunoprecipitations coupled with immunolocalizations identified puromycin-sensitive aminopeptidase A (PsaA) as a potential Cdk5 binding partner in Dictyostelium. Immunoprecipitations also identified two phosphotyrosine proteins (35 and 18 kDa) that may interact with Cdk5 in vivo. Together, this work provides new insight into the localization of Cdk5, its function during cell division, and its binding to a proteolytic enzyme in Dictyostelium.  相似文献   

17.
Cyclin-dependent kinases (Cdks) play important roles in the regulation of the cell cycle. Their inhibitors have entered clinical trials to treat cancer. Very recently, Davis et al. (Nat Struct Biol 9:745–749, 2002) have found a ligand NU6102, which has a high affinity with cyclin-dependent kinase 2 (K i =6 nM) but a low affinity with cyclin-dependent kinase 4 (K i =1,600 nM). To understand the selectivity, we use homology modeling, molecular docking, molecular dynamics and free-energy calculations to analyze the interactions. A rational 3D model of the Cdk4–NU6102 complex is built. Asp86 is a key residue that recognizes NU6102 more effectively with Cdk2 rather than Cdk4. Good binding free energies are obtained. Energetic analysis reveals that van der Waals interaction and nonpolar contributions to solvent are favorable in the formation of complexes and the sulfonamide group of the ligand plays a crucial role for binding selectivity between Cdk2 and Cdk4. Figure Two-dimensional representative for the interacting model of NU6102 complexed with the Cdk4 from a predicted structure by LIGPLOT.   相似文献   

18.
Cdc25A is a dual-specific protein phosphatase involved in the regulation of the kinase activity of Cdk-cyclin complexes in the eukaryotic cell cycle. To understand the mechanism of this important regulator, we have generated highly purified biochemical reagents to determine the kinetic constants for human Cdc25A with respect to a set of peptidic, artificial, and natural substrates. Cdc25A and its catalytic domain (dN25A) demonstrate very similar kinetics toward the artificial substrates p-nitrophenyl phosphate (k(cat)/K(m) = 15-25 M(-1) s(-1)) and 3-O-methylfluorescein phosphate (k(cat)/K(m) = 1.1-1.3 x 10(4) M(-1) s(-1)). Phospho-peptide substrates exhibit extremely low second-order rate constants and a flat specificity profile toward Cdc25A and dN25A (k(cat)/K(m) = 1 to 10 M(-1) s(-1)). In contrast to peptidic substrates, Cdc25A and dN25A are highly active phosphatases toward the natural substrate, T14- and Y15-bis-phosphorylated Cdk2/CycA complex (Cdk2-pTpY/CycA) with k(cat)/K(m) values of 1.0-1.1 x 10(6) M(-1) s(-1). In the context of the Cdk2-pTpY/CycA complex, phospho-threonine is preferred over phospho-tyrosine by more than 10-fold. The highly homologous catalytic domain of Cdc25c is essentially inactive toward Cdk2-pTpY/CycA. Taken together these data indicate that a significant degree of the specificity of Cdc25 toward its Cdk substrate resides within the catalytic domain itself and yet is in a region(s) that is outside the phosphate binding site of the enzyme.  相似文献   

19.
We have recently reported that protein kinase CK2 phosphortylates both in vivo and in vitro residue serine-46 of the cell cycle regulating protein Cdc28 of budding yeast Saccharomyces cerevisiae, confirming a previous observation that the same site is phosphorylated in Cdc2/Cdk1, the human homolog of Cdc28. In addition, S. cerevisiae in which serine-46 of Cdc28 has been mutated to alanine show a decrease of 33% in both cell volume and protein content, providing the genetic evidence that CK2 is involved in the regulation of budding yeast cell division cycle, and suggesting that this regulation may be brought about in G1 phase of the mammalian cell cycle. Here, we extended this observation reporting that the mutation of serine-46 of Cdc28 to glutamic acid doubles, at least in vitro, the H1-kinase activity of the Cdc28/cyclin A complex. Since this mutation has only little effects on the cell size of the cells, we hypothesize multiple roles of yeast CK2 in regulating the G1 transition in budding yeast.  相似文献   

20.
Fruit phenotype is a resultant of inherent genetic potential in interaction with impact of environment experienced during crop and fruit growth. The aim of this study was to analyze the genetic and physiological basis for the difference in fruit size between a small (‘Brioso’) and intermediate (‘Cappricia’) sized tomato cultivar exposed to different fruit temperatures. It was hypothesized that fruit heating enhances expression of cell cycle and expansion genes, rates of carbon import, cell division and expansion, and shortens growth duration, whereas increase in cell number intensifies competition for assimilates among cells. Unlike previous studies in which whole‐plant and fruit responses cannot be separated, we investigated the temperature response by varying fruit temperature using climate‐controlled cuvettes, while keeping plant temperature the same. Fruit phenotype was assessed at different levels of aggregation (whole fruit, cell and gene) between anthesis and breaker stage. We showed that: (1) final fruit fresh weight was larger in ‘Cappricia’ owing to more and larger pericarp cells, (2) heated fruits were smaller because their mesocarp cells were smaller than those of control fruits and (3) no significant differences in pericarp carbohydrate concentration were detected between heated and control fruits nor between cultivars at breaker stage. At the gene level, expression of cell division promoters (CDKB2, CycA1 and E2Fe‐like) was higher while that of the inhibitory fw2.2 was lower in ‘Cappricia’. Fruit heating increased expression of fw2.2 and three cell division promoters (CDKB1, CDKB2 and CycA1). Expression of cell expansion genes did not corroborate cell size observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号