首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons exhibit extreme diversity in size, but whether large neurons have specialized mechanisms to support their growth is largely unknown. Recently, we identified the SLC36 transporter Pathetic (Path) as a factor required for extreme dendrite growth in neurons. Path is broadly expressed, but only neurons with large dendrite arbors or small neurons that are forced to grow large require path for their growth. To gain insight into the basis of growth control by path, we generated additional alleles of path and further examined the apparent specificity of growth defects in path mutants. Here, we confirm our prior finding that loss of path function imposes an upper limit on neuron growth, and additionally report that path likely limits overall neurite length rather than dendrite length alone. Using a GFP knock-in allele of path, we identify additional tissues where path likely functions in nutrient sensing and possibly growth control. Finally, we demonstrate that path regulates translational capacity in a cell type that does not normally require path for growth, suggesting that path may confer robustness on growth programs by buffering translational output. Altogether, these studies suggest that Path is a nutrient sensor with widespread function in Drosophila.  相似文献   

2.
microRNA‐9 (miR‐9) is highly expressed in the nervous system across species and plays essential roles in neurogenesis and axon growth; however, little is known about the mechanisms that link miR‐9 with dendrite growth. Using an in vivo model of Drosophila class I dendrite arborization (da) neurons, we show that miR‐9a, a Drosophila homolog of mammalian miR‐9, downregulates the cadherin protein Flamingo (Fmi) thereby attenuating dendrite development in a non‐cell autonomous manner. In miR‐9a knockout mutants, the dendrite length of a sensory neuron ddaE was significantly increased. Intriguingly, miR‐9a is specifically expressed in epithelial cells but not in neurons, thus the expression of epithelial but not neuronal Fmi is greatly elevated in miR‐9a mutants. In contrast, overexpression of Fmi in the neuron resulted in a reduction in dendrite growth, suggesting that neuronal Fmi plays a suppressive role in dendrite growth, and that increased epithelial Fmi might promote dendrite growth by competitively binding to neuronal Fmi. Fmi has been proposed as a G protein‐coupled receptor (GPCR), we find that neuronal G protein Gαq (Gq), but not Go, may function downstream of Fmi to negatively regulate dendrite growth. Taken together, our results reveal a novel function of miR‐9a in dendrite morphogenesis. Moreover, we suggest that Gq might mediate the intercellular signal of Fmi in neurons to suppress dendrite growth. Our findings provide novel insights into the complex regulatory mechanisms of microRNAs in dendrite development, and further reveal the interplay between the different components of Fmi, functioning in cadherin adhesion and GPCR signalling. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 225–237, 2016  相似文献   

3.
Much attention has focused on dendritic translational regulation of neuronal signaling and plasticity. For example, long-term memory in adult Drosophila requires Pumilio (Pum), an RNA binding protein that interacts with the RNA binding protein Nanos (Nos) to form a localized translation repression complex essential for anterior-posterior body patterning in early embryogenesis. Whether dendrite morphogenesis requires similar translational regulation is unknown. Here we report that nos and pum control the elaboration of high-order dendritic branches of class III and IV, but not class I and II, dendritic arborization (da) neurons. Analogous to their function in body patterning, nos and pum require each other to control dendrite morphogenesis, a process likely to involve translational regulation of nos itself. The control of dendrite morphogenesis by Nos/Pum, however, does not require hunchback, which is essential for body patterning. Interestingly, Nos protein is localized to RNA granules in the dendrites of da neurons, raising the possibility that the Nos/Pum translation repression complex operates in dendrites. This work serves as an entry point for future studies of dendritic translational control of dendrite morphogenesis.  相似文献   

4.
Even though many extracellular factors have been identified as promoters of general dendritic growth and branching, little is known about the cell‐intrinsic modulators that allow neurons to sculpt distinctive patterns of dendrite arborization. Here, we identify Lrig1, a nervous system‐enriched LRR protein, as a key physiological regulator of dendrite complexity of hippocampal pyramidal neurons. Lrig1‐deficient mice display morphological changes in proximal dendrite arborization and defects in social interaction. Specifically, knockdown of Lrig1 enhances both primary dendrite formation and proximal dendritic branching of hippocampal neurons, two phenotypes that resemble the effect of BDNF on these neurons. In addition, we show that Lrig1 physically interacts with TrkB and attenuates BDNF signaling. Gain and loss of function assays indicate that Lrig1 restricts BDNF‐induced dendrite morphology. Together, our findings reveal a novel and essential role of Lrig1 in regulating morphogenic events that shape the hippocampal circuits and establish that the assembly of TrkB with Lrig1 represents a key mechanism for understanding how specific neuronal populations expand the repertoire of responses to BDNF during brain development.  相似文献   

5.
6.
7.
Proper dendrite development is essential for establishing neural circuitry, and Rho GTPases play key regulatory roles in this process. From mouse brain lysates, we identified Brefeldin A-inhibited guanine exchange factor 2 (BIG2) as a novel Rho GTPase regulatory protein involved in dendrite growth and maintenance. BIG2 was highly expressed during early development, and knockdown of the ARFGEF2 gene encoding BIG2 significantly reduced total dendrite length and the number of branches. Expression of the constitutively active ADP-ribosylation factor 1 ARF1 Q71L rescued the defective dendrite morphogenesis of ARFGEF2-null neurons, indicating that BIG2 controls dendrite growth and maintenance by activating ARF1. Moreover, BIG2 co-localizes with the Golgi apparatus and is required for Golgi deployment into major dendrites in cultured hippocampal neurons. Simultaneous overexpression of BIG2 and ARF1 activated RhoA, and treatment with the RhoA activator lysophosphatidic acid in neurons lacking BIG2 or ARF1 increased the number of cells with dendritic Golgi, suggesting that BIG2 and ARF1 activate RhoA to promote dendritic Golgi polarization. mDia1 was identified as a downstream effector of BIG2-ARF1-RhoA axis, mediating Golgi polarization and dendritic morphogenesis. Furthermore, in utero electroporation of ARFGEF2 shRNA into the embryonic mouse brain confirmed an in vivo role of BIG2 for Golgi deployment into the apical dendrite. Taken together, our results suggest that BIG2-ARF1-RhoA-mDia1 signaling regulates dendritic Golgi polarization and dendrite growth and maintenance in hippocampal neurons.  相似文献   

8.
Space-filling neurons extensively sample their receptive fields with fine dendritic branches. In this study we show that a member of the conserved Robo receptor family, Robo, and its ligand Slit regulate the dendritic differentiation of space-filling neurons. Loss of Robo or Slit function leads to faster elongating and less branched dendrites of the complex and space-filling class IV multi-dendritic dendrite-arborization (md-da) neurons in the Drosophila embryonic peripheral nervous system, but not of the simpler class I neurons. The total dendrite length of Class IV neurons is not modified in robo or slit mutant embryos. Robo mediates this process cell-autonomously. Upon Robo over-expression in md-da neurons the dendritic tree is simplified and time-lapse analysis during larval stages indicates that this is due to reduction in the number of newly formed branches. We propose that Slit, through Robo, provides an extrinsic signal to coordinate the growth rate and the branching level of space-filling neurons, thus allowing them to appropriately cover their target field.  相似文献   

9.
10.
On their way toward their synaptic targets, motor growth cones encounter multiple choice points, where they are confronted with trajectory choices. We have previously shown that the zebrafish unplugged gene acts as a somite-derived cue controlling pathway choice of primary motor axons. Here, we demonstrate that this trajectory choice is not exclusively controlled by a single unplugged-dependent process, but depends on the coordinated function of additional cues. We also show that secondary motor neurons, most similar to those in birds and mammals, depend on the unplugged gene to navigate a choice point, suggesting that primary and secondary motor neurons share common mechanisms controlling axonal path selection. Moreover, we show that the unplugged gene plays an additional role guiding secondary motor axons through a single segmental nerve. Finally, we report that unplugged larvae display a striking pharyngeal arch defect, consistent with a dual function of the unplugged gene in axonal guidance and cell motility.  相似文献   

11.
The extrinsic and intrinsic factors that regulate the size and complexity of dendritic arborizations are still poorly understood. Here we identify Fjx1, the rodent ortholog of the Drososphila planar cell polarity (PCP) protein Four-jointed (Fj), as a new inhibitory factor that regulates dendrite extension. The Drosophila gene four-jointed (fj) has been suggested to provide directional information in wing discs, but the mechanism how it acts is only poorly understood and the function of its mammalian homolog Fjx1 remains to be investigated. We analyzed the phenotype of a null mutation for mouse Fjx1. Homozygous Fjx1 mutants show an abnormal morphology of dendritic arbors in the hippocampus. In cultured hippocampal neurons from Fjx1 mutant mice, loss of Fjx1 resulted in an increase in dendrite extension and branching. Addition of Fjx1 to cultures of dissociated hippocampal neurons had the opposite effect and reduced the length of dendrites and decreased dendritic branching. Rescue experiments with cultured neurons showed that Fjx1 can act both cell-autonomously and non-autonomously. Our results identify Fjx1 as a new inhibitory factor that regulates dendrite extension.  相似文献   

12.
We previously demonstrated that inhibitory synaptic transmission influences dendrite development in vivo. We now report an analogous finding in an organotypic culture of a glycinergic projection nucleus, the medial nucleus of the trapezoid body (MNTB), and its postsynaptic target, the lateral superior olive (LSO) of gerbils. Cultures were generated at 6–7 days postnatal and grown in serum containing medium with or without the glycine receptor antagonist, strychnine (SN), at 2 μM. LSO neurons were then labeled with biocytin, and the dendritic arbors were analyzed morphometrically. Compared to neurons from age-matched in vivo tissue, the neurons cultured in control media were somewhat atrophic, including decreases in dendritic branching and length. Incubation in strychnine led to a dramatic increase in dendritic branching and total dendritic length. Control neurons averaged 6.3 branches, compared to 18 branches/neuron in SN-treated cultures. There was a similar increase in primary dendrites and total dendritic length. The physical elimination of MNTB cells did not mimic SN treatment, presumably because glycinergic LSO neurons generated intrinsic connections. In fact, the LSO soma area was significantly greater following MNTB removal, suggesting that these afferents provide a second signal to postsynaptic neurons. These results suggest that spontaneous glycinergic transmission regulates the growth of postsynaptic processes. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
14.
A number of recent reports implicate the differential regulation of apical and basal dendrites in autism disorders and in the higher functions of the human brain. They show that apical and basal dendrites are functionally specialized and that mechanisms regulating their development have important consequences for neuron function. The molecular identity of layer II‐III neurons of the cerebral cortex is determined by the overlapping expression of Cux1 and Cux2. We previously showed that both Cux1 and Cux2 are necessary and nonredundant for normal dendrite development of layer II‐III neurons. Loss of function of either gene reduced dendrite arbors, while overexpression increased dendritic complexity and suggested additive functions. We herein characterize the function of Cux1 and Cux2 in the development of apical and basal dendrites. By in vivo loss and gain of function analysis, we show that while the expression level of either Cux1 or Cux2 influences both apical and basal dendrites, they have distinct effects. Changes in Cux1 result in a marked effect on the development of the basal compartment whereas modulation of Cux2 has a stronger influence on the apical compartment. These distinct effects of Cux genes might account for the functional diversification of layer II‐III neurons into different subpopulations, possibly with distinct connectivity patterns and modes of neuron response. Our data suggest that by their differential effects on basal and apical dendrites, Cux1 and Cux2 can promote the integration of layer II‐III neurons in the intracortical networks in highly specific ways. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 163–172, 2015  相似文献   

15.
During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F) that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.  相似文献   

16.
The actin cytoskeleton inside extending axonal and dendritic processes must undergo continuous assembly and disassembly. Some extrinsic factors modulate actin turnover through controlling the activity of LIM kinase 1 (LIMK1), which phosphorylates and inactivates the actin depolymerizing factor cofilin. Here, we for the first time examine the function and regulation of LIMK1 in vivo in the vertebrate nervous system. Upon expression of wildtype or kinase-dead forms of the protein, dendrite growth by Xenopus retinal ganglion cells (RGCs) was unchanged. In contrast, maintaining a low, but significant level, of LIMK1 function in the RGC axon is critical for proper extension. Interestingly, bone morphogenetic protein receptor II (BMPRII) is a major regulator of LIMK1 in extending RGC axons, as expression of a BMPRII lacking the LIMK1 binding region caused a dramatic shortening of the axons. Previously, we found that BMPRIIs stimulate dendrite initiation in vivo. Thus, the fact that manipulation of LIMK1 activity failed to alter dendrite growth suggests that BMPs may activate distinct signalling pathways in axons and dendrites.  相似文献   

17.
《Fly》2013,7(4):173-177
ABSTRACT

In this Extra View, we extend our recent work on the protein LIN-28 and its role in adult stem cell divisions. LIN-28 is an mRNA- and microRNA-binding protein that is conserved from worms to humans. When expressed ectopically, it promotes the reprogramming of differentiated vertebrate cells into pluripotent stem cells as well as the regeneration of vertebrate tissues after injury. However, its endogenous function in stem cell populations is less clear. We recently reported that LIN-28 is specifically expressed in progenitor cells in the adult Drosophila intestine and enhances insulin signaling within this population. Loss of lin-28 alters the division patterns of these progenitor cells, limiting the growth of the intestinal epithelium that is ordinarily caused by feeding. Thus, LIN-28 is part of an uncharacterized circuit used to remodel a tissue in response to environmental cues like nutrition. Here, we extend this analysis by reporting that the levels of LIN-28 in progenitor cells are sensitive to nutrient availability. In addition, we speculate about the role of LIN-28 in the translational control of target mRNAs such as Insulin Receptor (InR) and how such translational control may be an important mechanism that underlies the stem cell dynamics needed for tissue homeostasis and growth.  相似文献   

18.
To cover the receptive field completely and non‐redundantly, neurons of certain functional groups arrange tiling of their dendrites. In Drosophila class IV dendrite arborization (da) neurons, the NDR family kinase Tricornered (Trc) is required for homotypic repulsion of dendrites that facilitates dendritic tiling. We here report that Sin1, Rictor, and target of rapamycin (TOR), components of the TOR complex 2 (TORC2), are required for dendritic tiling of class IV da neurons. Similar to trc mutants, dendrites of sin1 and rictor mutants show inappropriate overlap of the dendritic fields. TORC2 components physically and genetically interact with Trc, consistent with a shared role in regulating dendritic tiling. Moreover, TORC2 is essential for Trc phosphorylation on a residue that is critical for Trc activity in vivo and in vitro. Remarkably, neuronal expression of a dominant active form of Trc rescues the tiling defects in sin1 and rictor mutants. These findings suggest that TORC2 likely acts together with the Trc signalling pathway to regulate the dendritic tiling of class IV da neurons, and thus uncover the first neuronal function of TORC2 in vivo.  相似文献   

19.
20.
To determine whether glia from different regions of the central nervous system (CNS) initiate or maintain primary dendritic growth, embryonic day 18 mouse cortical neurons were co-cultured with rat (postnatal day 4) astroglial cells derived from retina, spinal cord, mesencephalon, striatum, olfactory bulb, retina, and cortex. Axon and dendrite outgrowth from isolated neurons was quantified using morphological and immunohistochemical techniques at 18 h and 1, 3, and 5 days in vitro. Neurons initially extend the same number of neurites, regardless of the source of glial monolayer; however, glial cells differ in their ability to maintain primary dendrites. Homotypic cortical astrocytes maintain the greatest number of primary dendrites. Glia derived from the olfactory bulb and retina maintained intermediate numbers of dendrites, whereas only a small number of primary dendrites were maintained by glia derived from striatum, spinal cord, or mesencephalon. Longer axons were initially observed from neurons grown on glia that did not maintain dendrite number. Axonal length, however, was similar on the various monolayers after 5 days in vitro. Neurons that were grown in media conditioned by either mesencephalic or cortical glia for the first 24 h followed by culture media from glia of the alternate source for 4 days in vitro confirmed that glia maintained, rather than initiated, the outgrowth of the primary dendritic arbor. These results indicate that glial cells derived from various CNS regions differ in their ability to maintain the primary dendritic arbor from mouse cortical neurons in vitro. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号