首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases.  相似文献   

2.
TRPM7 is an atypical type of ion channel because its pore-forming moiety is covalently linked to a protein kinase domain. The channel-kinase TRPM7 controls a wide range of biological processes such as mineral homeostasis, immune responses, cell motility, proliferation and differentiation. Earlier this year, Duan J & co-workers [1] published three TRPM7 structures resolved by cryo-electron microscopy (cryo-EM). This study tremendously advances our mechanistic understanding of TRPM7 channel function and forms the basis for informed structure-function assessment of this extraordinary protein.  相似文献   

3.
TRPM7(transient receptor potential melastatin 7)是近年来发现的一种具有离子通道和蛋白激酶双重结构的双功能蛋白.作为一种非选择性阳离子通道,其对包括Ca2+、Mg2+、K+、Na+在内的众多二价和单价阳离子有通透性;作为一种蛋白激酶其可使自身或底物磷酸化.TRPM7广泛存在于机体组织中,组成性表达于可兴奋和非可兴奋性细胞的质膜上;参与细胞内Mg2+平衡的调节、神经递质的释放、细胞的黏附和迁移等重要生理过程;并成为一些疾病如脑缺血损伤的新的治疗靶点.本文归纳近年的研究,对其结构、调控与功能进行综述.  相似文献   

4.
Glioblastoma (GBM) is the most common malignant primary brain tumour originating in the CNS. Median patient survival is <15 months with standard treatment which consists of surgery alongside radiation therapy and temozolomide chemotherapy. However, because of the aggressive nature of GBM, and the significant toxicity of these adjuvant therapies, long-term therapeutic effects are unsatisfactory. Thus, there is urgency to identify new drug targets for GBM. Recent evidence shows that the transient receptor potential melastatin 7 (TRPM7) cation channel is aberrantly upregulated in GBM and its inhibition leads to reduction of GBM cellular functions. This suggests that TRPM7 may be a potential drug target for GBM treatment. In this study, we assessed the effects of the specific TRPM7 antagonist waixenicin A on human GBM cell lines U87 or U251 both in vitro and in vivo. First, we demonstrated in vitro that application of waixenicin A reduced TRPM7 protein expression and inhibited the TRPM7-like currents in GBM cells. We also observed reduction of GBM cell viability, migration, and invasion. Using an intracranial xenograft GBM mouse model, we showed that with treatment of waixenicin A, there was increased cleaved caspase 3 activity, alongside reduction in Ki-67, cofilin, and Akt activity in vivo. Together, these data demonstrate higher GBM cell apoptosis, and lower proliferation, migration, invasion and survivability following treatment with waixenicin A.  相似文献   

5.
Stem cells and neurodegenerative diseases   总被引:1,自引:0,他引:1  
Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the de-velopment of old-aging society, the incidence of neurodegenerative diseases is on the increase. How-ever, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegen-erative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, Hunt-ington’s disease and Amyotrophic lateral sclerosis/Lou Gehrig’s disease.  相似文献   

6.
小胶质细胞与炎症介导的神经系统退行性病变   总被引:3,自引:0,他引:3  
小胶质细胞是中枢神经系统常驻细胞,行使支持、营养、免疫监视等多种功能。小胶质细胞在受到感染、外伤等因素刺激后活化,并产生多种免疫效应分子,包括:白细胞介素、肿瘤坏死因子、干扰素γ、活性氮、活性氧等。这些因子介导慢性炎症反应、细胞凋亡等,是导致神经系统退行性病变的主要因素。本文着重阐述小胶质细胞通过分泌这些效应分子引起神经功能损伤的机制,并对目前一些针对性治疗方法加以介绍。  相似文献   

7.
Prolonged survival of a typical postmitotic neuron hinges on a balance between multiple processes, among these are a sustenance of ATP production and protection against reactive oxygen species. In neuropathological conditions, mitochondrial defects often lead to both a drop in ATP levels, as well as increase reactive oxygen species production from inefficient electron transport processes and NADPH-oxidases activities. The former often resulted in the phenomenon of compensatory aerobic glycolysis. The latter stretches the capacity of the cell's redox buffering capacity, and may lead to damages of key enzymes involved in energy metabolism. Several recent reports have indicated that enhancing glucose availability and uptake, as well as increasing glycolytic flux via pharmacological or genetic manipulation of glycolytic enzymes, could be protective in animal models of several major neurodegenerative diseases, including Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Activation of canonical Wnt signaling, which improves disease symptoms in mouse models of Alzheimer's disease also appears to work via an elevation of glycolytic enzymes and enhance glucose metabolism. Here, I discuss these findings and the possible underlying mechanisms of how an increase in glucose uptake and glycolysis could be neuroprotective. Increased glycolytic production of ATP would help alleviate energy deficiency, and ATP's hydrotropic effect may enhance solubility and clearance of toxic aggregates prevalent in many neurodegenerative diseases. Furthermore, channeling of glucose into the Pentose Phosphate Pathway would increase the redox buffering capacity of the cell.  相似文献   

8.
Ischemic stroke is one of the leading causes of disability and death in the world. Elucidation of the underlying mechanisms associated with neuronal death during this detrimental process has been of significant interest in the field of research. One principle component vital to the maintenance of cellular integrity is the cytoskeleton. Studies suggest that abnormalities at the level of this fundamental structure are directly linked to adverse effects on cellular well-being, including cell death. In recent years, evidence has also emerged regarding an imperative role for the transient receptor potential (TRP) family member TRPM7 in the mediation of excitotoxic-independent neuronal demise. In this review, we will elaborate on the current knowledge and unique properties associated with the functioning of this structure. In addition, we will deliberate the involvement of distinct mechanistic pathways during TRPM7-dependent cell death, including modifications at the level of the cytoskeleton.  相似文献   

9.
多巴胺调控人类的情绪和认识能力,包括思想、感觉、理解、推理等,同时,它也在人类的运动功能中发挥重要作用。研究表明多巴胺的合成、储存、释放、降解和重摄取等失衡均与中枢神经系统的多种退行性疾病有密切联系,同时许多治疗疾病的有效药物也围绕多巴胺的研究而产生,如多巴胺替代疗法改善帕金森病的运动症状,多巴胺受体阻断剂可改善舞蹈病的运动症状以及调节多种疾病的精神症状,在临床上都取得了可喜的疗效。然而目前未发现与多巴胺代谢直接相关的基因突变,因此未来需要继续深入研究在神经退行性疾病中造成多巴胺代谢失常的机制,旨在为临床新药物靶点和新治疗手段的研发提供线索。  相似文献   

10.
Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a plasma membrane ion channel linked to a cytosolic protein kinase domain. Genetic inactivation of this bi-functional protein revealed its crucial role in Ca2+ signalling, Mg2+ metabolism, immune responses, cell motility, proliferation and differentiation. Malfunctions of TRPM7 are associated with anoxic neuronal death, cardiac fibrosis, tumour progression and macrothrombocytopenia. Recently, several groups have identified small organic compounds acting as inhibitors or activators of the TRPM7 channel. In follow-up studies, the identified TRPM7 modulators were successfully used to uncover new cellular functions of TRPM7 in situ including a crucial role of TRPM7 in Ca2+ signaling and Ca2+ dependent cellular processes. Hence, TRPM7 has been defined as a promising drug target. Here, we summarize the progress in this quickly developing field.  相似文献   

11.
随着现代社会工业的发展,空气污染日益严重,空气污染对人体的损害也越来越大。空气污染中的有害物质,能通过各种途径引起各系统的疾病,甚至会影响儿童的身体和智力发育。研究发现,长期暴露或急性暴露在某些空气污染物中可以直接损伤中枢神经系统,或污染物引起呼吸系统和免疫系统等产生有害因子,通过外周循环到达大脑,导致大脑的神经炎症、神经毒性、氧化应激等反应,最终产生神经退行性病变,如阿尔茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)等。  相似文献   

12.
During gastrulation, cells in the dorsal marginal zone polarize, elongate, align and intercalate to establish the physical body axis of the developing embryo. Here we demonstrate that the bifunctional channel-kinase TRPM7 is specifically required for vertebrate gastrulation. TRPM7 is temporally expressed maternally and throughout development, and is spatially enriched in tissues undergoing convergent extension during gastrulation. Functional studies reveal that TRPM7's ion channel, but not its kinase domain, specifically affects cell polarity and convergent extension movements during gastrulation, independent of mesodermal specification. During gastrulation, the non-canonical Wnt pathway via Dishevelled (Dvl) orchestrates the activities of the GTPases Rho and Rac to control convergent extension movements. We find that TRPM7 functions synergistically with non-canonical Wnt signaling to regulate Rac activity. The phenotype caused by depletion of the Ca2+- and Mg2+-permeant TRPM7 is suppressed by expression of a dominant negative form of Rac, as well as by Mg2+ supplementation or by expression of the Mg2+ transporter SLC41A2. Together, these studies demonstrate an essential role for the ion channel TRPM7 and Mg2+ in Rac-dependent polarized cell movements during vertebrate gastrulation.  相似文献   

13.
Neuronal death is directly implicated in the pathogenesis of neurodegenerative diseases (NDDs). NDDs cannot be cured because the mechanisms underlying neuronal death are too complicated to be therapeutically suppressed. Neuroprotective factors, such as neurotrophins, certain growth factors, neurotrophic cytokines, and short neuroprotective peptides, support neuronal survival in both physiological and pathological conditions, suggesting that these factors may be good drug candidates for NDDs. We recently generated a novel neuroprotective peptide named Colivelin by attaching activity-dependent neurotrophic factor (ADNF) to the N-terminus of a potent Humanin derivative, AGA-(C8R)HNG17. HN was originally identified from an Alzheimer’s disease (AD) brain as an endogenous neuroprotective peptide that suppresses AD-relevant toxicity. Colivelin protects neurons from death relevant to NDDs by activating two independent prosurvival signals: an ADNF-mediated Ca2+/calmodulin-dependent protein kinase IV pathway and an HN-mediated STAT3 pathway. The neuroprotective effect of Colivelin provides novel insights into therapy for NDDs. An erratum to this article is available at .  相似文献   

14.
神经炎症与神经退行性疾病的关系   总被引:1,自引:0,他引:1  
Qiu AW  Liu Z  Guo J  Peng YP 《生理科学进展》2011,42(5):353-358
近十多年来的研究表明,在神经退行性疾病的发生与发展中,脑内始终存在着以胶质细胞激活为主要特征的炎症反应。神经炎症是把双刃剑,一方面,它诱发或加重神经系统的退行性病变;另一方面,它在某些特定情况下有利于神经系统损伤的修复。激活的胶质细胞通过释放致炎细胞因子和活性氧自由基等分子介导神经炎症所致的神经元退行性病变,而由调节性T细胞产生的抗炎细胞因子及由神经元释放的抗炎神经肽能保护神经元抵抗神经炎症,从而减缓或减轻神经退行性疾病的进程。  相似文献   

15.
Although the prevalence of neurodegenerative diseases is increasing as a consequence of the growing aging population, the exact pathophysiological mechanisms leading to these diseases remains obscure. Multiple sclerosis (MS), an autoimmune disease of the central nervous system and the most frequent cause of disability among young people after traumatic brain injury, is characterized by inflammatory/demyelinating and neurodegenerative processes that occurr earlier in life. The ability to make an early diagnosis of MS with the support of conventional MRI techniques, provides the opportunity to study neurodegeneration and the underlying pathophysiological processes in earlier stages than in classical neurodegenerative diseases. This review summarizes mechanisms of neurodegeneration common to MS and to Alzheimer disease, Parkinson disease, and amiotrophic lateral sclerosis, and provides a brief overview of the neuroimaging studies employing MRI and PET techniques to investigate and monitor neurodegeneration in both MS and classical neurodegenerative diseases.  相似文献   

16.
Cytoplasmic dynein is the most important molecular motor driving the movement of a wide range of cargoes towards the minus ends of microtubules.As a molecular motor protein,dynein performs a variety of basic cellular functions including organelle transport and centrosome assembly.In the nervous system,dynein has been demonstrated to be responsible for axonal retrograde transport.Many studies have revealed direct or indirect evidence of dynein in neurodegenerative diseases such as amyotrophic lateral sclerosis,Charcot-Marie-Tooth disease,Alzheimer’s disease,Parkinson’s disease and Huntington’s disease.Among them,a number of mutant proteins involved in various neurodegenerative diseases interact with dynein.Axonal transport disruption is presented as a common feature occurring in neurodegenerative diseases.Dynein heavy chain mutant mice also show features of neurodegenerative diseases.Moreover,defects of dynein-dependent processes such as autophagy or clearance of aggregation-prone proteins are found in most of these diseases.Lines of evidence have also shown that dynein is associated with neurodevelopmental diseases.In this review,we focus on dynein involvement in different neurological diseases and discuss potential underlying mechanisms.  相似文献   

17.
During aging, the production of free radicals increases. This can result in damage to protein, the accumulation of which is characteristic of the aging process. This questions the efficacy of proteolytic systems. Among these systems, the proteasome and the adenosine triphosphate-ubiquitin-dependent pathway have been shown to play an important role in the elimination of abnormal proteins. There are two major steps in the ubiquitin-proteasome pathway: the conjugation of a polyubiquitin degradation signal to the substrate and the subsequent degradation of the tagged protein by the 26S proteasome. The 26S proteasome is build-up from the 20S proteasome, which is a cylinder-shaped multimeric complex, and two additional 19S complexes. The 20S proteasome can also bind to 11S regulator and is then implicated in antigen presentation. These regulators confer a high adaptability on proteasome. With advancing age, predisposition to neurodegenerative diseases increases. These diseases are also characterized by protein aggregation. Several findings such as the presence of ubiquinated proteins, usually broken down by proteasomes, and genetic anomalies involving the ubiquitinproteasome system (parkin, UCH-L1) suggest a link between the ubiquitin-proteasome pathway and the genesis of these diseases.  相似文献   

18.
19.
赵梦圆  张勇  刘翠华 《微生物学报》2021,61(5):1073-1090
神经退行性疾病以突触丢失和神经元死亡为特征,表现为认知功能下降、痴呆和运动功能丧失.流行病学和实验证据提示:慢性细菌、病毒和真菌感染可能是导致神经退行性疾病如阿尔兹海默症(AD)、帕金森病(PD)、肌萎缩性侧索硬化症(ALS)和多发性硬化症(MS)等的危险因素.病原体在中枢神经系统的持续感染可导致一系列细胞生物学功能的...  相似文献   

20.
Gao H  Chen X  Du X  Guan B  Liu Y  Zhang H 《Cell calcium》2011,50(6):559-568
Ion channels involved in the migration of tumor cells that is required for their invasion and metastasis. In this paper, we describe the interaction of TRPM7 channel and epidermal growth factor (EGF), an important player in cancer development in the migration of lung cancer cells. The TRPM7 currents in A549 cells were first characterized by means of electrophysiology, pharmacology and RNA interference. Removing Ca2+ from the extracellular solution not only potentiated a large inward current, but also abolished the outward rectification. 200 μM 2-APB inhibited the outward and the inward TRPM7 currents and at the same time restored the property of outward rectification. EGF greatly enhanced the migration of A549 cells, and also markedly up-regulated the membrane protein expression of TRPM7 and the amplitude of TRPM7 currents. Depressing the function of TRPM7 with RNA interference or pharmacological agents not only reversed the EGF-enhanced migration of A549 cells but also inhibited the basal migration of A549 cells in the absence of EGF. Thus it seems that TRPM7 plays a pivotal role in the migration of A549 cells induced by EGF and thus could be a potential therapeutic target in lung cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号