共查询到20条相似文献,搜索用时 0 毫秒
1.
Calcium (Ca2+) and magnesium (Mg2+) ions have been shown to play an important role in regulating various neuronal functions. In the present review we focus on the emerging role of transient potential melastatin-7 (TRPM7) channel in not only regulating Ca2+ and Mg2+ homeostasis necessary for biological functions, but also how alterations in TRPM7 function/expression could induce neurodegeneration. Although eight TRPM channels have been identified, the channel properties, mode of activation, and physiological responses of various TRPM channels are quite distinct. Among the known 8 TRPM channels only TRPM6 and TRPM7 channels are highly permeable to both Ca2+ and Mg2+; however here we will only focus on TRPM7 as unlike TRPM6, TRPM7 channels are abundantly expressed in neuronal cells. Importantly, the discrepancy in TRPM7 channel function and expression leads to various neuronal diseases such as Alzheimer disease (AD) and Parkinson disease (PD). Further, it is emerging as a key factor in anoxic neuronal death and in other neurodegenerative disorders. Thus, by understanding the precise involvement of the TRPM7 channels in different neurodegenerative diseases and by understanding the factors that regulate TRPM7 channels, we could uncover new strategies in the future that could evolve as new drug therapeutic targets for effective treatment of these neurodegenerative diseases. 相似文献
2.
TRPM7(transient receptor potential melastatin 7)是近年来发现的一种具有离子通道和蛋白激酶双重结构的双功能蛋白.作为一种非选择性阳离子通道,其对包括Ca2+、Mg2+、K+、Na+在内的众多二价和单价阳离子有通透性;作为一种蛋白激酶其可使自身或底物磷酸化.TRPM7广泛存在于机体组织中,组成性表达于可兴奋和非可兴奋性细胞的质膜上;参与细胞内Mg2+平衡的调节、神经递质的释放、细胞的黏附和迁移等重要生理过程;并成为一些疾病如脑缺血损伤的新的治疗靶点.本文归纳近年的研究,对其结构、调控与功能进行综述. 相似文献
3.
4.
多巴胺调控人类的情绪和认识能力,包括思想、感觉、理解、推理等,同时,它也在人类的运动功能中发挥重要作用。研究表明多巴胺的合成、储存、释放、降解和重摄取等失衡均与中枢神经系统的多种退行性疾病有密切联系,同时许多治疗疾病的有效药物也围绕多巴胺的研究而产生,如多巴胺替代疗法改善帕金森病的运动症状,多巴胺受体阻断剂可改善舞蹈病的运动症状以及调节多种疾病的精神症状,在临床上都取得了可喜的疗效。然而目前未发现与多巴胺代谢直接相关的基因突变,因此未来需要继续深入研究在神经退行性疾病中造成多巴胺代谢失常的机制,旨在为临床新药物靶点和新治疗手段的研发提供线索。 相似文献
5.
随着现代社会工业的发展,空气污染日益严重,空气污染对人体的损害也越来越大。空气污染中的有害物质,能通过各种途径引起各系统的疾病,甚至会影响儿童的身体和智力发育。研究发现,长期暴露或急性暴露在某些空气污染物中可以直接损伤中枢神经系统,或污染物引起呼吸系统和免疫系统等产生有害因子,通过外周循环到达大脑,导致大脑的神经炎症、神经毒性、氧化应激等反应,最终产生神经退行性病变,如阿尔茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)等。 相似文献
6.
Neuronal death is directly implicated in the pathogenesis of neurodegenerative diseases (NDDs). NDDs cannot be cured because
the mechanisms underlying neuronal death are too complicated to be therapeutically suppressed. Neuroprotective factors, such
as neurotrophins, certain growth factors, neurotrophic cytokines, and short neuroprotective peptides, support neuronal survival
in both physiological and pathological conditions, suggesting that these factors may be good drug candidates for NDDs. We
recently generated a novel neuroprotective peptide named Colivelin by attaching activity-dependent neurotrophic factor (ADNF)
to the N-terminus of a potent Humanin derivative, AGA-(C8R)HNG17. HN was originally identified from an Alzheimer’s disease
(AD) brain as an endogenous neuroprotective peptide that suppresses AD-relevant toxicity. Colivelin protects neurons from
death relevant to NDDs by activating two independent prosurvival signals: an ADNF-mediated Ca2+/calmodulin-dependent protein kinase IV pathway and an HN-mediated STAT3 pathway. The neuroprotective effect of Colivelin
provides novel insights into therapy for NDDs.
An erratum to this article is available at . 相似文献
7.
Liu W Su LT Khadka DK Mezzacappa C Komiya Y Sato A Habas R Runnels LW 《Developmental biology》2011,(2):348-357
During gastrulation, cells in the dorsal marginal zone polarize, elongate, align and intercalate to establish the physical body axis of the developing embryo. Here we demonstrate that the bifunctional channel-kinase TRPM7 is specifically required for vertebrate gastrulation. TRPM7 is temporally expressed maternally and throughout development, and is spatially enriched in tissues undergoing convergent extension during gastrulation. Functional studies reveal that TRPM7's ion channel, but not its kinase domain, specifically affects cell polarity and convergent extension movements during gastrulation, independent of mesodermal specification. During gastrulation, the non-canonical Wnt pathway via Dishevelled (Dvl) orchestrates the activities of the GTPases Rho and Rac to control convergent extension movements. We find that TRPM7 functions synergistically with non-canonical Wnt signaling to regulate Rac activity. The phenotype caused by depletion of the Ca2+- and Mg2+-permeant TRPM7 is suppressed by expression of a dominant negative form of Rac, as well as by Mg2+ supplementation or by expression of the Mg2+ transporter SLC41A2. Together, these studies demonstrate an essential role for the ion channel TRPM7 and Mg2+ in Rac-dependent polarized cell movements during vertebrate gastrulation. 相似文献
8.
神经炎症与神经退行性疾病的关系 总被引:1,自引:0,他引:1
近十多年来的研究表明,在神经退行性疾病的发生与发展中,脑内始终存在着以胶质细胞激活为主要特征的炎症反应。神经炎症是把双刃剑,一方面,它诱发或加重神经系统的退行性病变;另一方面,它在某些特定情况下有利于神经系统损伤的修复。激活的胶质细胞通过释放致炎细胞因子和活性氧自由基等分子介导神经炎症所致的神经元退行性病变,而由调节性T细胞产生的抗炎细胞因子及由神经元释放的抗炎神经肽能保护神经元抵抗神经炎症,从而减缓或减轻神经退行性疾病的进程。 相似文献
9.
Although the prevalence of neurodegenerative diseases is increasing as a consequence of the growing aging population, the exact pathophysiological mechanisms leading to these diseases remains obscure. Multiple sclerosis (MS), an autoimmune disease of the central nervous system and the most frequent cause of disability among young people after traumatic brain injury, is characterized by inflammatory/demyelinating and neurodegenerative processes that occurr earlier in life. The ability to make an early diagnosis of MS with the support of conventional MRI techniques, provides the opportunity to study neurodegeneration and the underlying pathophysiological processes in earlier stages than in classical neurodegenerative diseases. This review summarizes mechanisms of neurodegeneration common to MS and to Alzheimer disease, Parkinson disease, and amiotrophic lateral sclerosis, and provides a brief overview of the neuroimaging studies employing MRI and PET techniques to investigate and monitor neurodegeneration in both MS and classical neurodegenerative diseases. 相似文献
10.
During aging, the production of free radicals increases. This can result in damage to protein, the accumulation of which is
characteristic of the aging process. This questions the efficacy of proteolytic systems. Among these systems, the proteasome
and the adenosine triphosphate-ubiquitin-dependent pathway have been shown to play an important role in the elimination of
abnormal proteins. There are two major steps in the ubiquitin-proteasome pathway: the conjugation of a polyubiquitin degradation
signal to the substrate and the subsequent degradation of the tagged protein by the 26S proteasome. The 26S proteasome is
build-up from the 20S proteasome, which is a cylinder-shaped multimeric complex, and two additional 19S complexes. The 20S
proteasome can also bind to 11S regulator and is then implicated in antigen presentation. These regulators confer a high adaptability
on proteasome.
With advancing age, predisposition to neurodegenerative diseases increases. These diseases are also characterized by protein
aggregation. Several findings such as the presence of ubiquinated proteins, usually broken down by proteasomes, and genetic
anomalies involving the ubiquitinproteasome system (parkin, UCH-L1) suggest a link between the ubiquitin-proteasome pathway
and the genesis of these diseases. 相似文献
11.
Cytoplasmic dynein is the most important molecular motor driving the movement of a wide range of cargoes towards the minus ends of microtubules.As a molecular motor protein,dynein performs a variety of basic cellular functions including organelle transport and centrosome assembly.In the nervous system,dynein has been demonstrated to be responsible for axonal retrograde transport.Many studies have revealed direct or indirect evidence of dynein in neurodegenerative diseases such as amyotrophic lateral sclerosis,Charcot-Marie-Tooth disease,Alzheimer’s disease,Parkinson’s disease and Huntington’s disease.Among them,a number of mutant proteins involved in various neurodegenerative diseases interact with dynein.Axonal transport disruption is presented as a common feature occurring in neurodegenerative diseases.Dynein heavy chain mutant mice also show features of neurodegenerative diseases.Moreover,defects of dynein-dependent processes such as autophagy or clearance of aggregation-prone proteins are found in most of these diseases.Lines of evidence have also shown that dynein is associated with neurodevelopmental diseases.In this review,we focus on dynein involvement in different neurological diseases and discuss potential underlying mechanisms. 相似文献
12.
Ion channels involved in the migration of tumor cells that is required for their invasion and metastasis. In this paper, we describe the interaction of TRPM7 channel and epidermal growth factor (EGF), an important player in cancer development in the migration of lung cancer cells. The TRPM7 currents in A549 cells were first characterized by means of electrophysiology, pharmacology and RNA interference. Removing Ca2+ from the extracellular solution not only potentiated a large inward current, but also abolished the outward rectification. 200 μM 2-APB inhibited the outward and the inward TRPM7 currents and at the same time restored the property of outward rectification. EGF greatly enhanced the migration of A549 cells, and also markedly up-regulated the membrane protein expression of TRPM7 and the amplitude of TRPM7 currents. Depressing the function of TRPM7 with RNA interference or pharmacological agents not only reversed the EGF-enhanced migration of A549 cells but also inhibited the basal migration of A549 cells in the absence of EGF. Thus it seems that TRPM7 plays a pivotal role in the migration of A549 cells induced by EGF and thus could be a potential therapeutic target in lung cancers. 相似文献
13.
It has long been believed that the lysosome is an important digestive organelle. There is increasing evidence that the lysosome is also involved in pathogenesis of a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Abnormal protein degradation and deposition induced by iysosomal dysfunction may be the primary contributor to age-related neurodegeneration. In this review, the possible relationship between lysosome and various neurodegenerative diseases is described. 相似文献
14.
Natural antioxidants for neurodegenerative diseases 总被引:5,自引:0,他引:5
Zhao B 《Molecular neurobiology》2005,31(1-3):283-293
The author reviews the studies on the preventing effects of natural antioxidants, such as vitamins E and C, flavonoids, and
polyphenols on neurodegenerative diseases, especially summarizing the results on the protective effect of ginkgo biloba extract
on neuron cells, preventing effects of green tea polyphenols on apoptosis of PC12 cells (Parkinson’s disease model), preventing
effects of genestien on amyloid-β-induced apoptosis of hippocampal neuronal cells (Alzhemer’s disease model), and preventing
effect of Crataegus flavonoids on ischemic-reperfusion damage to the brain of the Mongolian gerbil (stroke model) in the laboratory. 相似文献
15.
Jing Wang Qian-jin Liao Yi Zhang Hui Zhou Chen-hui Luo Jie Tang Ying Wang Yan Tang Min Zhao Xue-heng Zhao Qiong-yu Zhang Ling Xiao 《Biochemical and biophysical research communications》2014
Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions. 相似文献
16.
SIRT1(silent mating type information regulation2homolog1)是Sirtuins脱乙酰基酶家族中的一员,是酵母沉默信息调节因子SIR2(silence information regulator)的同源物,因其能在许多生物体模型中作为寿命延长调节子调控细胞生命周期而受到特别关注。SIRT1蛋白存在于哺乳动物细胞质和细胞核中,是老化相关蛋白。SIRT1作用于基因转录因子能加强基因组的稳定性。神经系统发生变性疾病时SIRT1表达量上调,起到一定的神经保护作用。但有实验验证神经元损伤SIRT1过表达导致记忆缺失,并没有起到神经保护作用。SIRT1诱导剂,可以是Sirtuin的激动剂也可以是能量限制状态。目前在生命科学领域里SIRT1已经凸显其科学价值地位,该文就SIRT1及其与神经变性疾病之间的关系做一综述。 相似文献
17.
18.
Young Hwa Kim Sumin Lee Hyejin Yang Yoo Lim Chun Dokyoung Kim Seung Geun Yeo 《Animal cells and systems.》2020,24(4):189-196
ABSTRACT Irreversible peripheral neurodegenerative diseases such as diabetic peripheral neuropathy are becoming increasingly common due to rising rates of diabetes mellitus; however, no effective therapeutic treatments have been developed. One of main causes of irreversible peripheral neurodegenerative diseases is dysfunction in Schwann cells, which are neuroglia unique to the peripheral nervous system (PNS). Because homeostasis of calcium (Ca2+) and magnesium (Mg2+) is essential for Schwann cell dynamics, the regulation of these cations is important for controlling peripheral nerve degeneration and regeneration. Transient receptor potential melastatin 7 (TRPM7) is a non-selective ion (Ca2+ and Mg2+) channel that is expressed in Schwann cells. In the present study, we demonstrated in an ex vivo culture system that inhibition of TRPM7 during peripheral nerve degeneration (Wallerian degeneration) suppressed dedifferentiable or degenerative features (trans-dedifferentiation and proliferation) and conserved a differentiable feature of Schwann cells. Our results indicate that TRPM7 could be very useful as a molecular target for irreversible peripheral neurodegenerative diseases, facilitating discovery of new therapeutic methods for improving human health. 相似文献
19.
20.
E. E. Dubinina A. V. Pustygina 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2007,1(4):284-298
Literature data on the role of oxidative stress in aging have been summarized. There are certain links between parameters of free radical processes (intensity of generation of reactive oxygen species in mitochondria, oxidative modification of mitochondrial DNA, activity of desaturases, involved into biosynthesis of polyunsaturated C20 and C22 fatty acids) with life span. The review highlights the role of oxidative stress as on of pathogenic factors of numerous diseases including various neurodegenerative disorders. Special attention is paid to oxidative modification of proteins as one of early and reliable markers of tissue injury in free radical pathology. Oxidative destruction of proteins plays a major role in etiology of such neurodegenerative diseases as Alzheimer’s and Parkinson’s diseases. Oxidative stress and the stress related protein aggregation are considered as the pathogenic link in the development of familiar amyotrophic lateral sclerosis. Oxidative modification of proteins is associated with the development of cataract. The age-and pathology-related increases in the content of oxidized proteins in tissues is assessed as an early and specific parameter of oxidative stress. 相似文献