首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Several fatal, progressive neurodegenerative diseases, including various prion and prion-like disorders, are connected with the misfolding of specific proteins. These proteins misfold into toxic oligomeric species and a spectrum of distinct self-templating amyloid structures, termed strains. Hence, small molecules that prevent or reverse these protein-misfolding events might have therapeutic utility. Yet it is unclear whether a single small molecule can antagonize the complete repertoire of misfolded forms encompassing diverse amyloid polymorphs and soluble oligomers. We have begun to investigate this issue using the yeast prion protein Sup35 as an experimental paradigm. We have discovered that a polyphenol, (−)epigallocatechin-3-gallate (EGCG), effectively inhibited the formation of infectious amyloid forms (prions) of Sup35 and even remodeled preassembled prions. Surprisingly, EGCG selectively modulated specific prion strains and even selected for EGCG-resistant prion strains with novel structural and biological characteristics. Thus, treatment with a single small molecule antagonist of amyloidogenesis can select for novel, drug-resistant amyloid polymorphs. Importantly, combining EGCG with another small molecule, 4,5-bis-(4-methoxyanilino)phthalimide, synergistically antagonized and remodeled a wide array of Sup35 prion strains without producing any drug-resistant prions. We suggest that minimal drug cocktails, small collections of drugs that collectively antagonize all amyloid polymorphs, should be identified to besiege various neurodegenerative disorders.Key words: amyloid, yeast prion, Sup35, prion strains, EGCG, DAPH-12  相似文献   

2.
The propensity of proteins to form beta-sheet-rich amyloid fibrils is related to a variety of biological phenomena, including a number of human neurodegenerative diseases and prions. A subset of amyloidogenic proteins forms amyloid fibrils through glutamine/asparagine (Q/N)-rich domains, such as pathogenic polyglutamine (poly(Q)) proteins involved in neurodegenerative disease, as well as yeast prions. In the former, the propensity of an expanded poly(Q) tract to abnormally fold confers toxicity on the respective protein, leading to neuronal dysfunction. In the latter, Q/N-rich prion domains mediate protein aggregation important for epigenetic regulation. Here, we investigated the relationship between the pathogenic ataxin-3 protein of the human disease spinocerebellar ataxia type 3 (SCA3) and the yeast prion Sup35, using Drosophila as a model system. We found that the capacity of the Sup35 prion domain to mediate protein aggregation is conserved in Drosophila. Although select yeast prions enhance poly(Q) toxicity in yeast, the Sup35N prion domain suppressed poly(Q) toxicity in the fly. Suppression required the oligopeptide repeat of the Sup35N prion domain, which is critical for prion properties in yeast. These results suggest a trans effect of prion domains on pathogenic poly(Q) disease proteins in a multicellular environment and raise the possibility that Drosophila may allow studies of prion mechanisms.  相似文献   

3.
Replicating amyloids, called prions, are responsible for transmissible neurodegenerative diseases in mammals and some heritable phenotypes in fungi. The transmission of prions between species is usually inhibited, being highly sensitive to small differences in amino acid sequence of the prion-forming proteins. To understand the molecular basis of this prion interspecies barrier, we studied the transmission of the [PSI(+)] prion state from Sup35 of Saccharomyces cerevisiae to hybrid Sup35 proteins with prion-forming domains from four other closely related Saccharomyces species. Whereas all the hybrid Sup35 proteins could adopt a prion form in S. cerevisiae, they could not readily acquire the prion form from the [PSI(+)] prion of S. cerevisiae. Expression of the hybrid Sup35 proteins in S. cerevisiae [PSI(+)] cells often resulted in frequent loss of the native [PSI(+)] prion. Furthermore, all hybrid Sup35 proteins showed different patterns of interaction with the native [PSI(+)] prion in terms of co-polymerization, acquisition of the prion state, and induced prion loss, all of which were also dependent on the [PSI(+)] variant. The observed loss of S. cerevisiae [PSI(+)] can be related to inhibition of prion polymerization of S. cerevisiae Sup35 and formation of a non-heritable form of amyloid. We have therefore identified two distinct molecular origins of prion transmission barriers between closely sequence-related prion proteins: first, the inability of heterologous proteins to co-aggregate with host prion polymers, and second, acquisition by these proteins of a non-heritable amyloid fold.  相似文献   

4.
How small heat shock proteins (sHsps) might empower proteostasis networks to control beneficial prions or disassemble pathological amyloid is unknown. Here, we establish that yeast sHsps, Hsp26 and Hsp42, inhibit prionogenesis by the [PSI+] prion protein, Sup35, via distinct and synergistic mechanisms. Hsp42 prevents conformational rearrangements within molten oligomers that enable de novo prionogenesis and collaborates with Hsp70 to attenuate self-templating. By contrast, Hsp26 inhibits self-templating upon binding assembled prions. sHsp binding destabilizes Sup35 prions and promotes their disaggregation by Hsp104, Hsp70, and Hsp40. In yeast, Hsp26 or Hsp42 overexpression prevents [PSI+] induction, cures [PSI+], and potentiates [PSI+]-curing by Hsp104 overexpression. In vitro, sHsps enhance Hsp104-catalyzed disaggregation of pathological amyloid forms of α-synuclein and polyglutamine. Unexpectedly, in the absence of Hsp104, sHsps promote an unprecedented, gradual depolymerization of Sup35 prions by Hsp110, Hsp70, and Hsp40. This unanticipated amyloid-depolymerase activity is conserved from yeast to humans, which lack Hsp104 orthologues. A human sHsp, HspB5, stimulates depolymerization of α-synuclein amyloid by human Hsp110, Hsp70, and Hsp40. Thus, we elucidate a heretofore-unrecognized human amyloid-depolymerase system that could have applications in various neurodegenerative disorders.  相似文献   

5.
Shewmaker F  Ross ED  Tycko R  Wickner RB 《Biochemistry》2008,47(13):4000-4007
The [URE3] and [PSI (+)] prions of Saccharomyces cerevisiae are self-propagating amyloid forms of Ure2p and Sup35p, respectively. The Q/N-rich N-terminal domains of each protein are necessary and sufficient for the prion properties of these proteins, forming in each case their amyloid cores. Surprisingly, shuffling either prion domain, leaving amino acid content unchanged, does not abrogate the ability of the proteins to become prions. The discovery that the amino acid composition of a polypeptide, not the specific sequence order, determines prion capability seems contrary to the standard folding paradigm that amino acid sequence determines protein fold. The shuffleability of a prion domain further suggests that the beta-sheet structure is of the parallel in-register type, and indeed, the normal Ure2 and Sup35 prion domains have such a structure. We demonstrate that two shuffled Ure2 prion domains capable of being prions form parallel in-register beta-sheet structures, and our data indicate the same conclusion for a single shuffled Sup35 prion domain. This result confirms our inference that shuffleability indicates parallel in-register structure.  相似文献   

6.
A variety of proteins are capable of converting from their soluble forms into highly ordered fibrous cross‐β aggregates (amyloids). This conversion is associated with certain pathological conditions in mammals, such as Alzheimer disease, and provides a basis for the infectious or hereditary protein isoforms (prions), causing neurodegenerative disorders in mammals and controlling heritable phenotypes in yeast. The N‐proximal region of the yeast prion protein Sup35 (Sup35NM) is frequently used as a model system for amyloid conversion studies in vitro. Traditionally, amyloids are recognized by their ability to bind Congo Red dye specific to β‐sheet rich structures. However, methods for quantifying amyloid fibril formation thus far were based on measurements linking Congo Red absorbance to concentration of insulin fibrils and may not be directly applicable to other amyloid‐forming proteins. Here, we present a corrected formula for measuring amyloid formation of Sup35NM by Congo Red assay. By utilizing this corrected procedure, we explore the effect of different sodium salts on the lag time and maximum rate of amyloid formation by Sup35NM. We find that increased kosmotropicity promotes amyloid polymerization in accordance with the Hofmeister series. In contrast, chaotropes inhibit polymerization, with the strength of inhibition correlating with the B‐viscosity coefficient of the Jones‐Dole equation, an increasingly accepted measure for the quantification of the Hofmeister series.  相似文献   

7.
Protein misfolding and assembly into ordered, self-templating aggregates (amyloid) has emerged as a novel mechanism for regulating protein function. For a subclass of amyloidogenic proteins known as prions, this process induces transmissible changes in normal cellular physiology, ranging from neurodegenerative disease in animals and humans to new traits in fungi. The severity and stability of these altered phenotypic states can be attenuated by the conformation or amino-acid sequence of the prion, but in most of these cases, the protein retains the ability to form amyloid in vitro. Thus, our ability to link amyloid formation in vitro with its biological consequences in vivo remains a challenge. In two recent studies, we have begun to address this disconnect by assessing the effects of the cellular environment on traits associated with the misfolding of the yeast prion Sup35. Remarkably, the effects of quality control pathways and of limitations on protein transfer in vivo amplify the effects of even slight differences in the efficiency of Sup35 misfolding, leading to dramatic changes in the associated phenotype. Together, our studies suggest that the interplay between protein misfolding pathways and their cellular context is a crucial contributor to prion biology.Key words: prion, protein misfolding, chaperones, amyloid, ordered aggregates, transmission, aggregate size, Sup35, Hsp104  相似文献   

8.
Mammalian and most fungal infectious proteins (also known as prions) are self-propagating amyloid, a filamentous beta-sheet structure. A prion domain determines the infectious properties of a protein by forming the core of the amyloid. We compare the properties of known prion domains and their interactions with the remainder of the protein and with chaperones. Ure2p and Sup35p, two yeast prion proteins, can still form prions when the prion domains are shuffled, indicating a parallel in-register beta-sheet structure.  相似文献   

9.
《朊病毒》2013,7(2):76-83
Protein misfolding and assembly into ordered, self-templating aggregates (amyloid) has emerged as a novel mechanism for regulating protein function. For a subclass of amyloidogenic proteins known as prions, this process induces transmissible changes in normal cellular physiology, ranging from neurodegenerative disease in animals and humans to new traits in fungi. The severity and stability of these altered phenotypic states can be attenuated by the conformation or amino-acid sequence of the prion, but in most of these cases, the protein retains the ability to form amyloid in vitro. Thus, our ability to link amyloid formation in vitro with its biological consequences in vivo remains a challenge. In two recent studies, we have begun to address this disconnect by assessing the effects of the cellular environment on traits associated with the misfolding of the yeast prion Sup35. Remarkably, the effects of quality control pathways and of limitations on protein transfer in vivo amplify the effects of even slight differences in the efficiency of Sup35 misfolding, leading to dramatic changes in the associated phenotype. Together, our studies suggest that the interplay between protein misfolding pathways and their cellular context is a crucial contributor to prion biology.  相似文献   

10.
《朊病毒》2013,7(2):45-47
The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation, and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability.  相似文献   

11.
《朊病毒》2013,7(1):44-47
Aggregation of amyloid proteins is involved in serious neurodegenerative disorders such as Alzheimer disease and transmissible encephalopathies. The concept of an infectious protein (prion) proposed as the scrapie agent was successfully validated for several proteins of yeast and fungi. Ure2, Sup35 and Rnq1 in Saccharomyces cerevisiae and HET-s in Podospora anserina have been genetically, then biochemically identified as prion proteins. Studies on these proteins have brought critical informations on the mechanisms of prions appearance and propagation. The prion phenotype correlates with the aggregation state of these particular proteins. In vitro, the recombinant prion proteins form amyloid fibers characterized by a rich β-sheet content. In a previous work on the HET-s prion protein of Podospora we have demonstrated the infectivity of HET-s recombinant amyloid aggregates. More recently, the structural analysis of the prion domain of HET-s associated with in vivo mutagenesis allowed us to propose a model for the infectious fold of the HET-s prion domain. Further investigations to complete this model are discussed in this review as well as relevant questions about the [Het-s] system of Podospora anserina.  相似文献   

12.
Multiple yeast prions have been identified that result from the structural conversion of proteins into a self-propagating amyloid form. Amyloid-based prion activity in yeast requires a series of discrete steps. First, the prion protein must form an amyloid nucleus that can recruit and structurally convert additional soluble proteins. Subsequently, maintenance of the prion during cell division requires fragmentation of these aggregates to create new heritable propagons. For the Saccharomyces cerevisiae prion protein Sup35, these different activities are encoded by different regions of the Sup35 prion domain. An N-terminal glutamine/asparagine-rich nucleation domain is required for nucleation and fiber growth, while an adjacent oligopeptide repeat domain is largely dispensable for prion nucleation and fiber growth but is required for chaperone-dependent prion maintenance. Although prion activity of glutamine/asparagine-rich proteins is predominantly determined by amino acid composition, the nucleation and oligopeptide repeat domains of Sup35 have distinct compositional requirements. Here, we quantitatively define these compositional requirements in vivo. We show that aromatic residues strongly promote both prion formation and chaperone-dependent prion maintenance. In contrast, nonaromatic hydrophobic residues strongly promote prion formation but inhibit prion propagation. These results provide insight into why some aggregation-prone proteins are unable to propagate as prions.  相似文献   

13.
Tanaka M  Chien P  Yonekura K  Weissman JS 《Cell》2005,121(1):49-62
Efficiency of interspecies prion transmission decreases as the primary structures of the infectious proteins diverge. Yet, a single prion protein can misfold into multiple infectious conformations, and such differences in "strain conformation" also alter infection specificity. Here, we explored the relationship between prion strains and species barriers by creating distinct synthetic prion forms of the yeast prion protein Sup35. We identified a strain conformation of Sup35 that allows transmission from the S. cerevisiae (Sc) Sup35 to the highly divergent C. albicans (Ca) Sup35 both in vivo and in vitro. Remarkably, cross-species transmission leads to a novel Ca strain that in turn can infect the Sc protein. Structural studies reveal strain-specific conformational differences in regions of the prion domain that are involved in intermolecular contacts. Our findings support a model whereby strain conformation is the critical determinant of cross-species prion transmission while primary structure affects transmission specificity by altering the spectrum of preferred amyloid conformations.  相似文献   

14.
Yeast prions are a powerful model for understanding the dynamics of protein aggregation associated with a number of human neurodegenerative disorders. The AAA+ protein disaggregase Hsp104 can sever the amyloid fibrils produced by yeast prions. This action results in the propagation of "seeds" that are transmitted to daughter cells during budding. Overexpression of Hsp104 eliminates the [PSI+] prion but not other prions. Using biochemical methods we identified Hsp104 binding sites in the highly charged middle domain of Sup35, the protein determinant of [PSI+]. Deletion of a short segment of the middle domain (amino acids 129-148) diminishes Hsp104 binding and strongly affects the ability of the middle domain to stimulate the ATPase activity of Hsp104. In yeast, [PSI+] maintained by Sup35 lacking this segment, like other prions, is propagated by Hsp104 but cannot be cured by Hsp104 overexpression. These results provide new insight into the enigmatic specificity of Hsp104-mediated curing of yeast prions and sheds light on the limitations of the ability of Hsp104 to eliminate aggregates produced by other aggregation-prone proteins.  相似文献   

15.
Molecular basis of a yeast prion species barrier   总被引:22,自引:0,他引:22  
Santoso A  Chien P  Osherovich LZ  Weissman JS 《Cell》2000,100(2):277-288
The yeast [PSI+] factor is inherited by a prion mechanism involving self-propagating Sup35p aggregates. We find that Sup35p prion function is conserved among distantly related yeasts. As with mammalian prions, a species barrier inhibits prion induction between Sup35p from different yeast species. This barrier is faithfully reproduced in vitro where, remarkably, ongoing polymerization of one Sup35p species does not affect conversion of another. Chimeric analysis identifies a short domain sufficient to allow foreign Sup35p to cross this barrier. These observations argue that the species barrier results from specificity in the growing aggregate, mediated by a well-defined epitope on the amyloid surface and, together with our identification of a novel yeast prion domain, show that multiple prion-based heritable states can propagate independently within one cell.  相似文献   

16.
17.
Recent studies indicate that enzymatic treatment of the infectious PrPSc prion under defined conditions could be an effective method to inactivate infectious prions. However, field studies on prion inactivation are hampered by restricted access to the dangerous and expensive infectious prion material. Hence, a surrogate marker for infectious prions would facilitate more practical prion inactivation research. Protein Sup35p, a non-pathogenic prion-like protein produced in yeast, has physical and chemical properties very similar to the BSE prion. Sup35NM-His6, a derivative of Sup35p, was produced from Escherichia coli by gene cloning, protein expression and purification. Monomeric Sup35NM-His6 is soluble. When aggregated, it forms prion-like amyloid, insoluble and resistant to proteases. Similar to BSE prion, a pre-heating step renders this protein digestible by proteinase K, subtilisin and keratinase but not collagenase and elastase. These results indicated that Sup35NM-His6, being simple and inexpensive to produce and non-pathogenic, can be a potential ideal candidate of prion surrogate protein in the study of prion inactivation and prevention of prion diseases.  相似文献   

18.
A remarkable feature of prions is that infectious particles composed of the same prion protein can give rise to different phenotypes. This strain phenomenon suggests that a single prion protein can adopt multiple infectious conformations. Here we use a novel single fiber growth assay to examine the heterogeneity of amyloid fibers formed by the yeast Sup35 prion protein. Sup35 spontaneously forms multiple, distinct and faithfully propagating fiber types, which differ dramatically both in their degrees of polarity and overall growth rates. Both in terms of the number of distinct self-propagating fiber types, as well as the ability of these differences to dictate the rate of prion growth, this diversity is well suited to account for the range of prion strain phenotypes observed in vivo.  相似文献   

19.
Saccharomyces cerevisiae is an occasional host to an array of prions, most based on self-propagating, self-templating amyloid filaments of a normally soluble protein. [URE3] is a prion of Ure2p, a regulator of nitrogen catabolism, while [PSI +] is a prion of Sup35p, a subunit of the translation termination factor Sup35p. In contrast to the functional prions, [Het-s] of Podospora anserina and [BETA] of yeast, the amyloid-based yeast prions are rare in wild strains, arise sporadically, have an array of prion variants for a single prion protein sequence, have a folded in-register parallel β-sheet amyloid architecture, are detrimental to their hosts, arouse a stress response in the host, and are subject to curing by various host anti-prion systems. These characteristics allow a logical basis for distinction between functional amyloids/prions and prion diseases. These infectious yeast amyloidoses are outstanding models for the many common human amyloid-based diseases that are increasingly found to have some infectious characteristics.  相似文献   

20.
Prion Stability     
《朊病毒》2013,7(3):170-178
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号