首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Angle meristems are mounds of meristematic tissue located atdorsal and/or ventral branch points of the dichotomising stemaxes of many species of Selaginella (Lycophyta). The presentstudy examined the development of ventral angle shoots of S.martensii in response to removal of distal shoot apices (decapitation).Scanning electron microscopy of sequential replicas of developingangle meristems and angle shoots revealed that for the firsttwo pseudowhorls of leaf primordia, particular leaves are notattributable to particular merophytes of the angle meristemapical cell. Individual leaf primordia of the first (outer)pseudowhorl often form from more than one merophyte. Neitherthe shape of the angle meristem apical cell nor the directionof segmentation has any effect on the development of the angleshoot. Additionally, the apical cell of the angle meristem doesnot necessarily contribute directly to either of the new shootapices of the developing angle shoot. The first bifurcationof the angle shoot shows a remarkably consistent relationshipto the branching pattern of the parent shoot. The strong branchof the first angle shoot bifurcation typically occurs towardthe weak side branch of the parent shoot. Anatomical studiesshowed that bifurcation of the young angle shoot involved theformation of two new growth centres some distance away fromthe original angle meristem apical cell; new apical cells subsequentlyformed within these. These results provide additional supportfor the view that cell lineage has little or no effect on finalform or structure in plants.Copyright 1994, 1999 Academic Press Selaginella martensii Spring, Lycophyta, angle meristem, apical cell, shoot apical meristem, leaf primordium, branching, dichotomy, morphogenesis, determination, competence, development, mould and cast technique, replica technique, scanning electron microscopy  相似文献   

2.
Roles for Class III HD-Zip and KANADI genes in Arabidopsis root development   总被引:1,自引:0,他引:1  
Hawker NP  Bowman JL 《Plant physiology》2004,135(4):2261-2270
Meristems within the plant body differ in their structure and the patterns and identities of organs they produce. Despite these differences, it is becoming apparent that shoot and root apical and vascular meristems share significant gene expression patterns. Class III HD-Zip genes are required for the formation of a functional shoot apical meristem. In addition, Class III HD-Zip and KANADI genes function in patterning lateral organs and vascular bundles produced from the shoot apical and vascular meristems, respectively. We utilize both gain- and loss-of-function mutants and gene expression patterns to analyze the function of Class III HD-Zip and KANADI genes in Arabidopsis roots. Here we show that both Class III HD-Zip and KANADI genes play roles in the ontogeny of lateral roots and suggest that Class III HD-Zip gene activity is required for meristematic activity in the pericycle analogous to its requirement in the shoot apical meristem.  相似文献   

3.
Variation in plant shoot structure may be described as occurring through changes within a basic unit, the metamer. Using this terminology, the apical meristem of Arabidopsis produces three metameric types sequentially: type 1, rosette; type 2, coflorescence-bearing with bract; and type 3, flower-bearing without bract. We describe a mutant of Arabidopsis, Leafy, homozygous for a recessive allele of a nuclear gene LEAFY (LFY), that has an inflorescence composed only of type 2-like metamers. These data suggest that the LFY gene is required for the development of type 3 metamers and that the transition from type 2 to type 3 metamers is a developmental step distinct from that between vegetative and reproductive growth (type 1 to type 2 metamers). Results from double mutant analysis, showing that lfy-1 is epistatic to the floral organ homeotic gene ap2-6, are consistent with the hypothesis that a functional LFY gene is necessary for the expression of downstream genes controlling floral organ identity.  相似文献   

4.
The root apical meristem of Asplenium bulbiferum Forst. f. has a prominent four-sided pyramidal cell with its base in contact with the rootcap. Derivatives (merophytes) that contribute to the main body of the root are produced from the three proximal faces of the apical cell. The rootcap has its origin from the fourth (distal) face of the apical cell. The first division in a proximal merophyte is periclinal to the root surface, separating an outer cell and an inner cell. The outer cell is the origin of the outer part of the cortex and the epidermis; the larger inner cell is the origin of the inner cortex, endodermis, pericycle, and vascular tissue. After the establishment of the basic number of cells in a unilayered merophyte, the cells undergo transverse divisions forming longitudinal files of cells. The mitotic index of the apical cell indicates that it is not a quiescent cell. Also, the first plane of division in a newly formed merophyte dictates that the apical cell is the originator of merophytes.  相似文献   

5.
6.
A unique feature of flowering plants is their ability to produce organs continuously, for hundreds of years in some species, from actively growing tips called apical meristems. All plants possess at least one form of apical meristem, whose cells are functionally analogous to animal stem cells because they can generate specialized organs and tissues. The shoot apical meristem of angiosperm plants acts as a continuous source of pluripotent stem cells, whose descendents become incorporated into organ primordia and acquire different fates. Recent studies are unveiling some of the molecular pathways that specify stem cell fate in the center of the shoot apical meristem, that confer organ founder cell fate on the periphery, and that connect meristem patterning elements with events at the cellular level. The results are providing important insights into the mechanisms through which shoot apical meristems integrate cell fate decisions with cellular proliferation and global regulation of growth and development.  相似文献   

7.
Separation of shoot and floral identity in Arabidopsis   总被引:13,自引:0,他引:13  
  相似文献   

8.
The meristematic activity of the apical cell and its derivatives (merophytes) in the unbranched, determinate roots of Azolla filiculoides Lam. was investigated. The plane of division of the apical cell indicates that it is the initial of each merophyte. The division plane of each newly formed merophyte is strictly periclinal to the root surface and provides confirmation that the immediate derivatives of the apical cell cannot be the ultimate root initials. The frequency of cell division as determined by the mitotic index, and by the duration of the cell cycle as determined by the colchicine method, confirmed the meristematic activity of the apical cell. As roots increase in length, the duration of the cell cycle in the total meristem increases, with the apical cell possessing the longest cell cycle, whereas the immediate derivatives maintain approximately the same cycle duration as in shorter roots. In determinate Azolla roots, cell division appears to play a major role up to a certain root length, then increase in length is produced mainly by cell elongation.  相似文献   

9.
Formation and maintenance of the shoot apical meristem   总被引:16,自引:0,他引:16  
Development in higher plants is characterized by the reiterative formation of lateral organs from the flanks of shoot apical meristems. Because organs are produced continuously throughout the life cycle, the shoot apical meristem must maintain a pluripotent stem cell population. These two tasks are accomplished within separate functional domains of the apical meristem. These functional domains develop gradually during embryogenesis. Subsequently, communication among cells within the shoot apical meristem and between the shoot apical meristem and the incipient lateral organs is needed to maintain the functional domains within the shoot apical meristem.  相似文献   

10.
Many higher plants have shoot apical meristems that possess discrete cell layers, only one of which normally gives rise to gametes following the transition from vegetative meristem to floral meristem. Consequently, when mutations occur in the meristems of sexually reproducing plants, they may or may not have an evolutionary impact, depending on the apical layer in which they reside. In order to determine whether developmentally sequestered mutations could be released by herbivory (i.e., meristem destruction), a characterized genetic mosaic was subjected to simulated herbivory. Many plants develop two shoot meristems in the leaf axils of some nodes, here referred to as the primary and secondary axillary meristems. Destruction of the terminal and primary axillary meristems led to the outgrowth of secondary axillary meristems. Seed derived from secondary axillary meristems was not always descended from the second apical cell layer of the terminal shoot meristem as is expected for terminal and primary shoot meristems. Vegetative and reproductive analysis indicated that secondary meristems did not maintain the same order of cell layers present in the terminal shoot meristem. In secondary meristems reproductively sequestered cell layers possessing mutant cells can be repositioned into gamete-forming cell layers, thereby adding mutant genes into the gene pool. Herbivores feeding on shoot tips may influence plant evolution by causing the outgrowth of secondary axillary meristems.  相似文献   

11.
12.
The primary shoot apical meristem of angiosperm plants is formed during embryogenesis. Lateral shoot apical meristems arise postembryonically in the axils of leaves. Recessive mutations at the PINHEAD locus of Arabidopsis interfere with the ability of both the primary shoot apical meristem as well as lateral shoot apical meristems to form. However, adventitious shoot apical meristems can form in pinhead mutant seedlings from the axils of the cotyledons and also from cultred root explants. In this report, the phenotype of pinhead mutants is described, and a hypothesis for the role of the wild-type PINHEAD gene product in shoot meristem initiation is presented. © 1995 Wiley-Liss, Inc.  相似文献   

13.
14.
Formation of lateral organ primordia from the shoot apical meristem creates boundaries that separate the primordium from surrounding tissue. Morphological and gene expression studies indicate the presence of a distinct set of cells that define the boundaries in the plant shoot apex. Cells at the boundary usually display reduced growth activity that results in separation of adjacent organs or tissues and this morphological boundary coincides with the border of different cell identities. Such morphogenetic and patterning events and their spatial coordination are controlled by a number of boundary-specific regulatory genes. The boundary may also act as a reference point for the generation of new meristems such as axillary meristems. Many of the genes involved in meristem initiation are expressed in the boundary. This review summarizes the cellular characters of the shoot organ boundary and the roles of regulatory genes that control different aspects of this unique region in plant development.  相似文献   

15.
In white spruce, an improvement of somatic embryo number and quality can be achieved through experimental manipulations of the endogenous levels of reduced (GSH) and oxidized (GSSG) glutathione. An optimal protocol for embryo production included an initial application of GSH in the maturation medium, followed by replacement with GSSG during the remaining maturation period. Under these conditions, the overall embryo population more than doubled, and the percentage of fully developed embryos increased from 22% to almost 70%. These embryos showed improved post-embryonic growth and conversion frequency. Structural studies revealed remarkable differences between embryo types, especially in storage product deposition pattern and organization of the shoot apical meristem (SAM). Compared with their control counterparts, glutathione-treated embryos accumulated a larger amount of starch during the early stages of development, and more protein and lipid bodies during the second half of development. Differences were also noted in the organization of SAMs. Shoot meristems of control embryos were poorly organized and were characterized by the presence of intercellular spaces, which caused separation of the subapical cells. Glutathione-treated embryos had well-organized meristems composed of tightly packed cells which lack large vacuoles. The improved organization of the shoot apical meristems in treated embryos was ascribed to a lower production of ethylene. Differences in meristem structure between control and treated embryos were also related to the localization pattern of HBK1, a shoot apical meristem 'molecular marker' gene with preferential expression to the meristematic cells of the shoot pole. Expression of this gene, which was localized to the apical cells in control embryos, was extended to the subapical cells of treated embryos. Overall, it appears that meristem integrity and embryo quality are under the direct control of the glutathione redox state.  相似文献   

16.
The root apical meristem of Equisetum diffusum Don has a prominent four-sided pyramidal apical cell with its base (distal face) in contact with the root cap. Derivatives (merophytes) that contribute to the main body of the root are produced from the three proximal faces of the apical cell. The first division of a proximal merophyte is periclinal to the root surface separating a small inner cell from a larger outer cell. The inner cell is the precursor of the vascular cylinder. The larger outer cell is the precursor of the epidermis, cortex, endodermis, and pericycle. Radial sectors, established early in the development of the cortex, alternate with sectors in the vascular cylinder. These developmental steps show quite clearly that early root development in Equisetum is markedly different from that of most ferns.  相似文献   

17.
After a critical evaluation of the concept of dichotomous branching in Cormophytes the shoot apical meristems ofPsilotum triquetrum andSelaginella speciosa are described. InPsilotum only the terminal meristems of the cryptophilic shoots have a three sided apical cell. Those of the photophilic shoots lack a typical apical cell.Selaginella has a two sided apical cell. The process of branching is independent from apical cells. It is due to an equal or unequal fractionation of the initial zone of the shoot apex which embraces all tissues above the leaf producing zone of the apical meristem.
Herrn Univ.-Prof. Dr.Walter Leinfellner zum 70. Geburtstag gewidmet.  相似文献   

18.
Pattern formation during de novo assembly of the Arabidopsis shoot meristem   总被引:5,自引:0,他引:5  
Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. We characterize early patterning during de novo development of the Arabidopsis shoot meristem using fluorescent reporters of known gene and protein activities required for shoot meristem development and maintenance. We find that a small number of progenitor cells initiate development of new shoot meristems through stereotypical stages of reporter expression and activity of CUP-SHAPED COTYLEDON 2 (CUC2), WUSCHEL (WUS), PIN-FORMED 1 (PIN1), SHOOT-MERISTEMLESS (STM), FILAMENTOUS FLOWER (FIL, also known as AFO), REVOLUTA (REV), ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) and CLAVATA 3 (CLV3). Furthermore, we demonstrate a functional requirement for WUS activity during de novo shoot meristem initiation. We propose that de novo shoot meristem induction is an easily accessible system for the study of patterning and self-organization in the well-studied model organism Arabidopsis.  相似文献   

19.
The knotted1 (kn1) gene of maize is expressed in meristems and is absent from leaves, including the site of leaf initiation within the meristem. Recessive mutations of kn1 have been described that limit the capacity to make branches and result in extra carpels. Dominant mutations suggest that kn1 function plays a role in maintaining cells in an undifferentiated state. We took advantage of a Ds-induced dominant allele in order to screen for additional recessive alleles resulting from mobilization of the Ds element. Analysis of one such allele revealed a novel embryonic shoot phenotype in which the shoot initiated zero to few organs after the cotyledon was made, resulting in plants that arrested as seedlings. We refer to this phenotype as a limited shoot. The limited shoot phenotype reflected loss of kn1 function, but its penetrance was background dependent. We examined meristem size and found that plants lacking kn1 function had shorter meristems than non-mutant siblings. Furthermore, meristems of restrictive inbreds were significantly shorter than meristems of permissive inbreds, implying a correlation between meristem height and kn1 gene function in the embryo. Analysis of limited shoot plants during embryogenesis indicated a role for kn1 in shoot meristem maintenance. We discuss a model for kn1 in maintenance of the morphogenetic zone of the shoot apical meristem.  相似文献   

20.
Selaginella willdenovii Baker is a prostrate vascular cryptogam with a dorsiventral stem. At each major branching of the stem tip a dorsal and a ventral angle meristem are formed. The ventral meristem becomes determined as a root and the dorsal meristem as a shoot. Indoleacetic acid (IAA) is transported basipetally in the stem and has been found to be the regulatory agent for meristem determination both in vitro and in vivo.Growth measurements of intact plants indicated that the sequence of development for each stem unit is frond expansion, internodal elongation, ventral meristem growth as a root, and dorsal meristem growth as a shoot. The principal experimental findings of this study are as follows. Triiodobenzoic acid (TIBA), an inhibitor of auxin transport alters the normal pattern of development in intact plants, causing ventral meristems to develop as shoots and dorsal meristems to develop precociously. Dorsal meristems grown in sterile culture on an auxin-free medium develop as shoots, but in the presence of IAA develop as roots. Meristems transferred after excision from auxin-free to plus-auxin medium on successive days showed an increasing tendency to develop as shoots, with more than 50% doing so by day 5. The mitotic index is low at the time of excision of the meristem, rises to a peak on day 5 and then declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号