首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predation threat-associated behavioral response was studied in Rana temporalis tadpoles to discover the importance of predators’ visual and chemical cues (kairomones and diet-derived metabolites of consumed prey) in evoking antipredator behavior. The caged predators (dragonfly larvae) fed on prey tadpoles or insects (Notonecta spp.) and water conditioned with the predators provided the threat stimuli to the tadpole prey. The predators’ visual cues were ineffective in evoking antipredator behaviors in the tadpole prey. However, exposure to caged tadpole-fed predators or water conditioned with tadpole-fed predators elicited predator avoidance behavior in the tadpoles; they stayed away from the predators, significantly reduced swimming activity (swimming time and distance traveled), and increased burst speed. Interestingly, exposure to water conditioned with starved predators did not elicit any antipredator behavior in the prey. Further, the antipredator responses of predator-experienced tadpoles were significantly greater than those exhibited by predator-na?ve tadpoles. The study shows that R. temporalis tadpoles assess predation threat based exclusively on chemical cues emanating from the predators’ dietary metabolites and that the inclusion of conspecific prey items in the diet of the predators is perceived as a threat. The study also shows that antipredator behavior in these tadpoles is innate and is enhanced during subsequent encounters with the predators.  相似文献   

2.
The ability of prey to respond to novel predator cues may depend on the generality or specificity of the response to predator cues. We used laboratory behavioral experiments to examine the ability of tadpoles of three species of anurans (American toad, Bufo americanus ; bullfrog, Rana catesbeiana ; and green frog, R. clamitans ) to respond to the presence of two native potential predators (bluegill, Lepomis macrochirus ; and largemouth bass, Micropterus salmoides ) and one non-native potential predator (goldfish, Carassius auratus ). We also examined the effect of tadpole size on the behavioral responses of American toads and green frogs to predator cues. All three species of tadpoles responded to the presence of predator cues, although the specific responses varied among species. American toads and green frogs reduced activity in the presence of at least some fish cues, but bullfrog tadpoles did not change their activity. Bullfrogs decreased use of vegetation in the presence of some predator cues, whereas American toads and green frogs did not. American toads only responded to the presence of bluegill cues but not the other fish predator cues, whereas bullfrogs and green frogs responded more generally to the fish predators. In both American toads and green frogs, tadpole size affected behavior. For American toads, activity increased, as did the use of the vegetated side of the aquarium, in larger tadpoles. Not only did size affect American toad behavior, but it also influenced the responses of the tadpoles to predator cues. For green frogs, activity decreased in larger tadpoles. Our results suggest that behavioral responses of tadpoles to predator cues can be influenced by both the identity of the predator and the prey, as well as the size of the potential prey.  相似文献   

3.
Cannibalism among predators is a key intraspecific interaction affecting their density and foraging behavior, eventually modifying the strength of predation on heterospecific prey. Interestingly, previous studies showed that cannibalism among predators can increase or reduce predation on heterospecific prey; however, we know less about the factors that lead to these outcomes. Using a simple pond community consisting of Hynobius retardatus salamander larvae and their associated prey, I report empirical evidence that cannibalism among predators can increase predation on large heterospecific prey but reduce that on small heterospecific prey. In a field‐enclosure experiment in which I manipulated the occurrence of salamander cannibalism, I found that salamander cannibalism increased predation on frog tadpoles but reduced that on aquatic insects simultaneously. The contrasting effects are most likely to be explained by prey body size. In the study system, frog tadpoles were too large for non‐cannibal salamanders to consume, while aquatic insects were within the non‐cannibals’ consumable prey size range. However, when cannibalism occurred, a few individuals that succeeded in cannibalizing reached large enough size to consume frog tadpoles. Consequently, although cannibalism among salamanders reduced their density, salamander cannibalism increased predation on large prey frog tadpoles. Meanwhile, salamander cannibalism reduced predation on small prey aquatic insects probably because of a density reduction of non‐cannibals primarily consuming aquatic insects. Body size is often correlated with various ecological traits, for instance, diet width, consumption, and excretion rates, and is thus considered a good indicator of species’ effects on ecosystem function. All this considered, cannibalism among predators could eventually affect ecosystem function by shifting the size composition of the prey community.  相似文献   

4.
In nature, prey are exposed to multiple predators simultaneously. We examined the effects of the cues of two potential predators, mosquitofish and odonate larvae, individually and in combination on the behavior of green frog (Rana clamitans) tadpoles. In addition to examining the behavioral response of green frog tadpoles to multiple predators, we examined variation in behavior among tadpoles from different egg masses (i.e. different sibships). Sibships differed in activity level and there was a significant predator cue by sibship interaction. Two sibships were relatively more active in the control and odonate predator cue treatments but showed reduced activity in treatments containing mosquitofish cues, whereas the remaining sibships showed consistently low levels of activity in all predator cue treatments, including the control. The use of the vegetated side of the aquarium did not differ between tadpoles exposed to the different predator cues. Sibship had no effect on tadpoles’ use of the vegetated side of the aquarium, and there was no interaction between sibship and predator cue. Our results suggest that green frogs did not respond to simultaneous exposure to multiple predator cues any differently than they did to exposure to individual predator cues. More importantly, our results suggest variation, possibly genetically based, in behavioral responses of tadpoles to predators, and thus selection on these behaviors is possible. Of particular interest is that there was variation in behavioral responses to a non‐native predator (Gambusia affinis), suggesting an evolutionary response to an invasive predator is possible.  相似文献   

5.
Chemical cues transmitted through the environment are thought to underlie many prey responses to predation risk, but despite the known ecological and evolutionary significance of such cues, their basic composition are poorly understood. Using anuran tadpoles (prey) and dragonfly larvae (predators), we identified chemical cues associated with predation risk via solid phase extraction and mass spectrometry of the extracts. We found that dragonfly larvae predators consistently produced a negative ion, m/z 501.3, when they fed on bullfrog (Rana catesbeiana) and mink frog (Rana septentrionalis) tadpoles, but this ion was absent when dragonflies were fasted or fed invertebrate prey. When tadpole behavioral responses to dragonfly chemical cues were examined, tadpoles reduced their activity, particularly in response to dragonflies feeding on tadpoles. Furthermore, a negative correlation was noted between the level of tadpole activity and the concentration of the m/z 501.3 compound in dragonfly feeding trials, indicating that this ion was possibly responsible for tadpole anti-predator behavior.  相似文献   

6.
Predators can alter the outcome of ecological interactions among other members of the food web through their effects on prey behavior. While it is well known that animals often alter their behavior with the imposition of predation risk, we know less about how other features of predators may affect prey behavior. For example, relatively few studies have addressed the effects of predator identity on prey behavior, but such knowledge is crucial to understanding food web interactions. This study contrasts the behavioral responses of the freshwater snail Physellagyrina to fish and crayfish predators. Snails were placed in experimental mesocosms containing caged fish and crayfish, so the only communication between experimental snails and their predators was via non-visual cues. The caged fish and crayfish were fed an equal number of snails, thereby simulating equal prey mortality rates. In the presence of fish, the experimental snails moved under cover, which confers safety from fish predators. However, in the presence of crayfish, snails avoided benthic cover and moved to the water surface. Thus, two species of predators, exerting the same level of mortality on prey, induced very different behavioral responses. We predict that these contrasting behavioral responses to predation risk have important consequences for the interactions between snails and their periphyton resources. Received: 1 June 1998 / Accepted: 12 October 1998  相似文献   

7.
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non‐consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non‐native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non‐native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non‐consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non‐native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter‐related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non‐native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non‐native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.  相似文献   

8.
To begin identifying what behavioral details might be needed to characterize community dynamics and stability, we examined the effect of prey behavioral responses to predation risk on community dynamics and stability. We considered the case of prey altering their foraging effort to trade off energy gain and predation risk. We used state-dependent dynamic optimization to calculate the optimal trade-off for four models of prey behaviorally responding to predation risk. We consider a fixed behavior model in which prey use constant levels of foraging effort and three flexible behavior models in which prey change their foraging effort according to their physiological state and their perceived level of predation risk. Flexible behavior was destabilizing at the community level as evidenced by higher predator-prey oscillations and lower community persistence times. The mechanisms by which prey estimated predation risk also affected community stability. We found that community dynamics resulting from prey with flexible behavior and fixed perception of risk approximated community dynamics resulting from prey with flexible behavior and perfect information about predation risk, however neither approximated the community dynamics resulting from prey with flexible behavior and flexible perception of risk. Thus, whether it might be possible to abstract complex behavior with simpler rules when modeling community dynamics depends on the prey's behavioral mechanisms, which are empirically poorly known.  相似文献   

9.
The introduction of non-native predators is thought to have important negative effects on native prey populations. The susceptibility of native prey to non-native or introduced predators may depend on their ability to respond appropriately to the presence of these non-native predators. We conducted a laboratory based behavioral experiment to examine the response of American toad (Bufo americanus) and bullfrog (Rana catesbeiana) tadpoles to the presence of cues from the introduced mosquitofish (Gambusia affinis), a potential tadpole predator. Neither the American toad tadpoles nor the bullfrog tadpoles responded behaviorally to the presence of mosquitofish cues. If tadpoles are unable to respond to the presence of mosquitofish cues appropriately, then their ability to avoid predation by mosquitofish may be compromised and this may contribute to the impacts of mosquitofish on some tadpole populations.  相似文献   

10.
When prey are differentially affected by intra and interspecific competition, the cooccurrence of multiple prey species alters the per capita availability of food for a particular prey species which could alter how prey respond to the threat of predation, and hence the overall‐effect of predators. We conducted an experiment to examine the extent to which the nonconsumptive and overall effect of predatory water bugs on snail and tadpole traits (performance and morphology) depended on whether tadpoles and snails cooccurred. Tadpoles and snails differed in their relative susceptibility to intraspecific and interspecific competition, and predators affected both prey species via consumptive and nonconsumptive mechanisms. Furthermore, the overall effect of predators often depended on whether another prey species was present. The reasoning for why the overall effect of predators depended on whether prey species cooccurred, however, differed for each of the response variables. Predators affected snail body growth via nonconsumptive mechanisms, but the change in the overall effect of predators on snail body growth was attributable to how snails responded to competition in the absence of predators, rather than a change in how snails responded to the threat of predation. Predators did not affect tadpole body growth via nonconsumptive mechanisms, but the greater vulnerability of competitively superior prey (snails) to predators increased the strength of consumptive mechanisms (and hence the overall effect) through which predators affected tadpole growth. Predators affected tadpole morphology via nonconsumptive mechanisms, but the greater propensity for predators to kill competitively superior prey (snails) enhanced the ability of tadpoles to alter their morphology in response to the threat of predation by creating an environment where tadpoles had a higher per capita supply of food available to invest in the development of morphological defenses. Our work indicates that the mechanisms through which predators affect prey depends on the other members of the community.  相似文献   

11.
Relationships between direct predation and risk effects   总被引:4,自引:0,他引:4  
Risk effects arise when prey alter their behavior in response to predators, and these responses carry costs. Empirical studies have found that risk effects can be large. Nonetheless, studies of predation in vertebrate conservation and management usually consider only direct predation. Given the ubiquity and strength of behavioral responses to predators by vertebrate prey, it is not safe to assume that risk effects on dynamics can be ignored. Risk effects can be larger than direct effects. Risk effects can exist even when the direct rate of predation is zero. Risk effects and direct effects do not necessarily change in parallel. When risk effects reduce reproduction rather than survival, they are easily mistaken for limitation by food supply.  相似文献   

12.
In many size‐dependent predator–prey systems, hatching phenology strongly affects predator–prey interaction outcomes. Early‐hatched predators can easily consume prey when they first interact because they encounter smaller prey. However, this process by itself may be insufficient to explain all predator–prey interaction outcomes over the whole interaction period because the predator–prey size balance changes dynamically throughout their ontogeny. We hypothesized that hatching phenology influences predator–prey interactions via a feedback mechanism between the predator–prey size balance and prey consumption by predators. We experimentally tested this hypothesis in an amphibian predator–prey model system. Frog tadpoles Rana pirica were exposed to a predatory salamander larva Hynobius retardatus that had hatched 5, 12, 19 or 26 days after the frog tadpoles hatched. We investigated how the salamander hatch timing affected the dynamics of prey mortality, size changes of both predator and prey, and their subsequent life history (larval period and size at metamorphosis). The predator–prey size balance favoured earlier hatched salamanders, which just after hatching could successfully consume more frog tadpoles than later hatched salamanders. The early‐hatched salamanders grew rapidly and their accelerated growth enabled them to maintain the predator‐superior size balance; thus, they continued to exert strong predation pressure on the frog tadpoles in the subsequent period. Furthermore, frog tadpoles exposed to the early‐hatched salamanders were larger at metamorphosis and had a longer larval period than other frog tadpoles. These results suggest that feedback between the predator‐superior size balance and prey consumption is a critical mechanism that strongly affects the impacts of early hatching of predators in the short‐term population dynamics and life history of the prey. Because consumption of large nutrient‐rich prey items supports the growth of predators, a similar feedback mechanism may be common and have strong impacts on phenological shifts in size‐dependent trophic relationships.  相似文献   

13.
Predator‐induced phenotypic plasticity has been widely documented in response to native predators, but studies examining the extent to which prey can respond to exotic invasive predators are scarce. As native prey often do not share a long evolutionary history with invasive predators, they may lack defenses against them. This can lead to population declines and even extinctions, making exotic predators a serious threat to biodiversity. Here, in a community‐wide study, we examined the morphological and life‐history responses of anuran larvae reared with the invasive red swamp crayfish, Procambarus clarkii, feeding on conspecific tadpoles. We reared tadpoles of nine species until metamorphosis and examined responses in terms of larval morphology, growth, and development, as well as their degree of phenotypic integration. These responses were compared with the ones developed in the presence of a native predator, the larval dragonfly Aeshna sp., also feeding on tadpoles. Eight of the nine species altered their morphology or life history when reared with the fed dragonfly, but only four when reared with the fed crayfish, suggesting among‐species variation in the ability to respond to a novel predator. While morphological defenses were generally similar across species (deeper tails) and almost exclusively elicited in the presence of the fed dragonfly, life‐history responses were very variable and commonly elicited in the presence of the invasive crayfish. Phenotypes induced in the presence of dragonfly were more integrated than in crayfish presence. The lack of response to the presence of the fed crayfish in five of the study species suggests higher risk of local extinction and ultimately reduced diversity of the invaded amphibian communities. Understanding how native prey species vary in their responses to invasive predators is important in predicting the impacts caused by newly established predator–prey interactions following biological invasions.  相似文献   

14.
Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator–prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools—having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish ‘peeping’ out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.  相似文献   

15.
The stability of ecological communities depends strongly on quantitative characteristics of population interactions (type‐II vs. type‐III functional responses) and the distribution of body masses across species. Until now, these two aspects have almost exclusively been treated separately leaving a substantial gap in our general understanding of food webs. We analysed a large data set of arthropod feeding rates and found that all functional‐response parameters depend on the body masses of predator and prey. Thus, we propose generalised functional responses which predict gradual shifts from type‐II predation of small predators on equally sized prey to type‐III functional‐responses of large predators on small prey. Models including these generalised functional responses predict population dynamics and persistence only depending on predator and prey body masses, and we show that these predictions are strongly supported by empirical data on forest soil food webs. These results help unravelling systematic relationships between quantitative population interactions and large‐scale community patterns.  相似文献   

16.
Jason T. Hoverman  Rick A. Relyea 《Oikos》2012,121(8):1219-1230
Despite the amount of research on the inducible defenses of prey against predators, our understanding of the long‐term significance of non‐lethal predators on prey phenotypes, prey population dynamics, and community structure has rarely been explored. Our objectives were to assess the effects of predators on prey defenses, prey population dynamics, and the relative magnitude of density‐ versus trait‐mediated indirect interactions (DMIIs and TMIIs) over multiple prey generations. Using a freshwater snail and three common snail predators, we constructed a series of community treatments with pond mesocosms that manipulated trophic structure, the identity of the top predator, and whether predators were caged or uncaged. We quantified snail phenotypes, snail population size, and resource abundance over multiple snail generations. We found that snails were expressing inducible defenses in our system although the magnitude of the responses varied over time and across predator species. Despite the expression of inducible defenses, caged predators did not reduce snail population size. There also was no evidence of TMIIs throughout the experiment suggesting that TMIIs have a minimal role in the long‐term structure of our communities. The absence of TMIIs was largely driven by the lack of predator‐induced reductions in resource consumption and the lack of consistent reductions in population size with predator cues. In contrast, we detected strong DMIIs associated with lethal predators suggesting that DMIIs are the dominant long‐term mechanism influencing community structure. Our results demonstrate that although predators can have significant effects on prey phenotypes and sometimes cause short‐term TMIIs, there may be few long‐term consequences of these responses on population dynamics and indirect interactions, at least within simple food webs. Research directed towards addressing the long‐term consequences of predator–prey interactions within communities will help to reveal whether the conclusions and predictions generated from short‐term experiments are applicable over ecological and evolutionary timescales.  相似文献   

17.
Animals often alter their behaviour, morphology and physiology in the presence of predators. These induced defences can be fine‐tuned by a variety of environmental factors such as predator species, acute predation risk or food availability. It has, however, remained unclear what cues influence the extent and quality of induced defences and how the information content of these cues interact to determine the development of antipredator defences. We performed an experiment to study the significance of direct chemical cues, originating from the predators themselves, and indirect cues, released by attacked or consumed prey, for phenotypic responses in Rana dalmatina tadpoles. We reared tadpoles in the presence of caged predators (Triturus vulgaris, Aeshna cyanea) fed either one or three tadpoles every other day outside the tadpole‐rearing tanks. Fifteen hours after food provisioning, predators were put back into the tanks containing focal tadpoles either after washing (direct + digestion‐released cues) or with the water containing remnants of the prey (direct + all types of indirect cues). Our results suggest that direct cues together with digestion‐released cues can be sufficient to induce strong antipredator responses. Induced defences depended on both direct cues, affecting predator‐specific responses, and the quantity of indirect cues, resulting in graded responses to differences in predation threat. Moreover, direct and indirect cues interacted in behaviour, resulting in predator‐specific graded responses. We also observed a decrease in the extent of predator‐induced responses in large tadpoles as compared to small ones. Our results, thus, suggest that prey integrate multiple cues about predators to optimize induced defences and that this process changes during ontogeny.  相似文献   

18.
The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas) were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation) could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.  相似文献   

19.
While theoretical studies predict that inducible defences should be fine-tuned according to the qualities of the predator, very few studies have investigated how dangerousness of predators, i.e. the rate at which predators kill prey individuals, affects the strength of phenotypic responses and resulting benefits and costs of induced defences. We performed a comprehensive study on fitness consequences of predator-induced responses by involving four predators (leech, water scorpion, dragonfly larva and newt), evaluating costs and benefits of responses, testing differences in dangerousness between predators and measuring responses in several life history traits of prey. We raised Rana dalmatina tadpoles in the presence of free-ranging predators, in the presence of caged predators, and exposed naive and experienced tadpoles to free-ranging predators. Tadpoles adjusted the intensities of their behavioural and morphological defences to predator dangerousness. Survival was lower in the nonlethal presence of the most dangerous predator, while we could not detect costs of induced defences at or after metamorphosis. When exposed to free-ranging predators, small, but not large, tadpoles benefited from exhibiting an induced phenotype in terms of elevated survival when compared to naive tadpoles, but we did not observe higher survival either in tadpoles exhibiting more extreme phenotypes or in tadpoles exposed to the type of predator they were raised with. These results indicate that while predator-induced defences can mirror dangerousness of predators, costs and benefits do not necessarily scale to the magnitude of plastic responses.  相似文献   

20.
Climate change will alter the distribution of rainfall, with potential consequences for the hydrological dynamics of aquatic habitats. Hydrological stability can be an important determinant of diversity in temporary aquatic habitats, affecting species persistence and the importance of predation on community dynamics. As such, prey are not only affected by drought‐induced mortality but also the risk of predation [a non‐consumptive effect (NCE)] and actual consumption by predators [a consumptive effect (CE)]. Climate‐induced changes in rainfall may directly, or via altered hydrological stability, affect predator–prey interactions and their cascading effects on the food web, but this has rarely been explored, especially in natural food webs. To address this question, we performed a field experiment using tank bromeliads and their aquatic food web, composed of predatory damselfly larvae, macroinvertebrate prey and bacteria. We manipulated the presence and consumption ability of damselfly larvae under three rainfall scenarios (ambient, few large rainfall events and several small rainfall events), recorded the hydrological dynamics within bromeliads and examined the effects on macroinvertebrate colonization, nutrient cycling and bacterial biomass and turnover. Despite our large perturbations of rainfall, rainfall scenario had no effect on the hydrological dynamics of bromeliads. As a result, macroinvertebrate colonization and nutrient cycling depended on the hydrological stability of bromeliads, with no direct effect of rainfall or predation. In contrast, rainfall scenario determined the direction of the indirect effects of predators on bacteria, driven by both predator CEs and NCEs. These results suggest that rainfall and the hydrological stability of bromeliads had indirect effects on the food web through changes in the CEs and NCEs of predators. We suggest that future studies should consider the importance of the variability in hydrological dynamics among habitats as well as the biological mechanisms underlying the ecological responses to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号