共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial fatty acid synthesis is catalyzed by a dissociated fatty acid synthase similar to those of plant plastids and bacteria. The crystal structure of a mitochondrial beta-ketoacyl-[acyl carrier protein] synthase (mtKAS), namely that from Arabidopsis thaliana, has been determined for the first time. This enzyme accomplishes the vital condensation steps in constructing fatty acid carbon skeletons. The product profile of mtKAS is unusual in that C8 and C(14-16) fatty acyl chains predominate. An enzyme architecture that likely is the basis for the observed bimodal profile of mtKAS products can be derived from the shape of the acyl binding pocket. 相似文献
2.
The structure of beta-ketoacyl-[acyl carrier protein] reductase (FabG) from Escherichia coli was determined via the multiwavelength anomalous diffraction technique using a selenomethionine-labeled crystal containing 88 selenium sites in the asymmetric unit. The comparison of the E. coli FabG structure with the homologous Brassica napus FabG.NADP(+) binary complex reveals that cofactor binding causes a substantial conformational change in the protein. This conformational change puts all three active-site residues (Ser 138, Tyr 151, and Lys 155) into their active configurations and provides a structural mechanism for allosteric communication between the active sites in the homotetramer. FabG exhibits negative cooperative binding of NADPH, and this effect is enhanced by the presence of acyl carrier protein (ACP). NADPH binding also increases the affinity and decreases the maximum binding of ACP to FabG. Thus, unlike other members of the short-chain dehydrogenase/reductase superfamily, FabG undergoes a substantial conformational change upon cofactor binding that organizes the active-site triad and alters the affinity of the other substrate-binding sites in the tetrameric enzyme. 相似文献
3.
4.
Acyl carrier protein synthase (AcpS) catalyzes the formation of holo-ACP, which mediates the essential transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and lipids in the cell. Thus, AcpS plays an important role in bacterial fatty acid and lipid biosynthesis, making it an attractive target for therapeutic intervention. We have determined, for the first time, the crystal structure of the Streptococcus pneumoniae AcpS and AcpS complexed with 3'5'-ADP, a product of AcpS, at 2.0 and 1.9 A resolution, respectively. The crystal structure reveals an alpha/beta fold and shows that AcpS assembles as a tightly packed functional trimer, with a non-crystallographic pseudo-symmetric 3-fold axis, which contains three active sites at the interface between protomers. Only two active sites are occupied by the ligand molecules. Although there is virtually no sequence similarity between the S.pneumoniae AcpS and the Bacillus subtilis Sfp transferase, a striking structural similarity between both enzymes was observed. These data provide a starting point for structure-based drug design efforts towards the identification of AcpS inhibitors with potent antibacterial activity. 相似文献
5.
Płoskoń E Arthur CJ Evans SE Williams C Crosby J Simpson TJ Crump MP 《The Journal of biological chemistry》2008,283(1):518-528
The synthases that produce fatty acids in mammals (FASs) are arranged as large multidomain polypeptides. The growing fatty acid chain is bound covalently during chain elongation and reduction to the acyl carrier protein (ACP) domain that is then able to access each catalytic site. In this work we report the high-resolution nuclear magnetic resonance (NMR) solution structure of the isolated rat fatty acid synthase apoACP domain. The final ensemble of NMR structures and backbone (15)N relaxation studies show that apoACP adopts a single, well defined fold. On conversion to the holo form, several small chemical shift changes are observed on the ACP for residues surrounding the phosphopantetheine attachment site (as monitored by backbone (1)H-(15)N correlation experiments). However, there are negligible chemical shift changes when the holo form is modified to either the hexanoyl or palmitoyl forms. For further NMR analysis, a (13)C,(15)N-labeled hexanoyl-ACP sample was prepared and full chemical shift assignments completed. Analysis of two-dimensional F(2)-filtered and three-dimensional (13)C-edited nuclear Overhauser effect spectroscopy experiments revealed no detectable NOEs to the acyl chain. These experiments demonstrate that unlike other FAS ACPs studied, this Type I ACP does not sequester a covalently linked acyl moiety, although transient interactions cannot be ruled out. This is an important mechanistic difference between the ACPs from Type I and Type II FASs and may be significant for the modulation and regulation of these important mega-synthases. 相似文献
6.
The acyl carrier protein domain of the chicken liver fatty acid synthase has been isolated after tryptic treatment of the synthase. The isolated domain functions as an acceptor of acetyl and malonyl moieties in the synthase-catalyzed transfer of these groups from their coenzyme A esters and therefore indicates that the acyl carrier protein domain exists in the complex as a discrete entity. The amino acid sequence of the acyl carrier protein was derived from analyses of peptide fragments produced by cyanogen bromide cleavage and trypsin and Staphylococcus aureus V8 protease digestions of the molecule. The isolated acyl carrier protein domain consists of 89 amino acid residues and has a calculated molecular weight of 10,127. The protein contains the phosphopantetheine group attached to the serine residue at position 38. The isolated acyl carrier protein peptide shows some sequence homology with the acyl carrier protein of Escherichia coli, particularly in the vicinity of the site of phosphopantetheine attachment, and shows extensive sequence homology with the acyl carrier protein from the uropygial gland of goose. 相似文献
7.
Olsen JG Kadziola A von Wettstein-Knowles P Siggaard-Andersen M Lindquist Y Larsen S 《FEBS letters》1999,460(1):46-52
The crystal structure of the fatty acid elongating enzyme beta-ketoacyl [acyl carrier protein] synthase I (KAS I) from Escherichia coli has been determined to 2.3 A resolution by molecular replacement using the recently solved crystal structure of KAS II as a search model. The crystal contains two independent dimers in the asymmetric unit. KAS I assumes the thiolase alpha(beta)alpha(beta)alpha fold. Electrostatic potential distribution reveals an acyl carrier protein docking site and a presumed substrate binding pocket was detected extending the active site. Both subunits contribute to each substrate binding site in the dimer. 相似文献
8.
9.
10.
Mi Chung Suh David J. Schultz John B. Ohlrogge 《The Plant journal : for cell and molecular biology》1999,17(6):679-688
Seeds of coriandrum sativum (coriander) and Thunbergia alata (black-eyed Susan vine) produce unusual monoenoic fatty acids which constitute over 80% of the total fatty acids of the seed oil. The initial step in the formation of these fatty acids is the desaturation of palmitoyl-ACP (acyl carrier protein) at the delta(4) or delta(6) positions to produce delta(4)-hexadecenoic acid (16:1(delta(4)) or delta(6)-hexadecenoic acid (16:1(delta(6)), respectively. The involvement of specific forms of ACP in the production of these novel monoenoic fatty acids was studied. ACPs were partially purified from endosperm of coriander and T. alata and used to generate 3H- and 14C-labelled palmitoyl-ACP substrates. In competition assays with labelled palmitoyl-ACP prepared from spinach (Spinacia oleracea), delta(4)-acyl-ACP desaturase activity was two- to threefold higher with coriander ACP than with spinach ACP. Similarly, the T. alata delta(6) desaturase favoured T. alata ACP over spinach ACP. A cDNA clone, Cs-ACP-1, encoding ACP was isolated from a coriander endosperm cDNA library. Cs-ACP-1 mRNA was predominantly expressed in endosperm rather than leaves. The Cs-ACP-1 mature protein was expressed in E. coli and comigrated on SDS-PAGE with the most abundant ACP expressed in endosperm tissues. In in vitro delta(4)-palmitoyl-ACP desaturase assays, the Cs-ACP-1 expressed from E. coli was four- and 10-fold more active than spinach ACP or E. coli ACP, respectively, in the synthesis of delta(4)-hexadecenoic acid from palmitoyl-ACP. In contrast, delta(9)-stearoyl-ACP desaturase activity from coriander endosperm did not discriminate strongly between different ACP species. These results indicate that individual ACP isoforms are specifically involved in the biosynthesis of unusual seed fatty acids and further suggest that expression of multiple ACP isoforms may participate in determining the products of fatty acid biosynthesis. 相似文献
11.
The apicomplexan Cryptosporidium parvum possesses a unique 1500-kDa polyketide synthase (CpPKS1) comprised of 29 enzymes for synthesising a yet undetermined polyketide. This study focuses on the biochemical characterization of the 845-amino acid loading unit containing acyl-[ACP] ligase (AL) and acyl carrier protein (ACP). The CpPKS1-AL domain has a substrate preference for long chain fatty acids, particularly for the C20:0 arachidic acid. When using [3H]palmitic acid and CoA as co-substrates, the AL domain displayed allosteric kinetics towards palmitic acid (Hill coefficient, h=1.46, K50=0.751 microM, Vmax=2.236 micromol mg(-1) min(-1)) and CoA (h=0.704, K50=5.627 microM, Vmax=0.557 micromol mg(-1) min(-1)), and biphasic kinetics towards adenosine 5'-triphosphate (Km1=3.149 microM, Vmax1=373.3 nmol mg(-1) min(-1), Km2=121.0 microM, and Vmax2=563.7 nmol mg(-1) min(-1)). The AL domain is Mg2+-dependent and its activity could be inhibited by triacsin C (IC50=6.64 microM). Furthermore, the ACP domain within the loading unit could be activated by the C. parvum surfactin production element-type phosphopantetheinyl transferase. After attachment of the fatty acid substrate to the AL domain for conversion into the fatty-acyl intermediate, the AL domain is able to transfer palmitic acid to the activated holo-ACP in vitro. These observations ultimately validate the function of the CpPKS1-AL-ACP unit, and make it possible to further dissect the function of this megasynthase using recombinant proteins in a stepwise procedure. 相似文献
12.
13.
Relationships between fatty acid and polyketide synthases from Streptomyces coelicolor A3(2): characterization of the fatty acid synthase acyl carrier protein.
下载免费PDF全文

We have characterized an acyl carrier protein (ACP) presumed to be involved in the synthesis of fatty acids in Streptomyces coelicolor A3(2). This is the third ACP to have been identified in S. coelicolor; the two previously characterized ACPs are involved in the synthesis of two aromatic polyketides: the blue-pigmented antibiotic actinorhodin and a grey pigment associated with the spore walls. The three ACPs are clearly related. The presumed fatty acid synthase (FAS) ACP was partially purified, and the N-terminal amino acid sequence was obtained. The corresponding gene (acpP) was cloned and sequenced and found to lie within 1 kb of a previously characterized gene (fabD) encoding another subunit of the S. coelicolor FAS, malonyl coenzyme A:ACP acyl-transferase. Expression of S. coelicolor acpP in Escherichia coli yielded several different forms, whose masses corresponded to the active (holo) form of the protein carrying various acyl substituents. To test the mechanisms that normally prevent the FAS ACP from substituting for the actinorhodin ACP, acpP was cloned in place of actI-open reading frame 3 (encoding the actinorhodin ACP) to allow coexpression of acpP with the act polyketide synthase (PKS) genes. Pigmented polyketide production was observed, but only at a small fraction of its former level. This suggests that the FAS and PKS ACPs may be biochemically incompatible and that this could prevent functional complementation between the FAS and PKSs that potentially coexist within the same cells. 相似文献
14.
15.
Characterization of recombinant thioesterase and acyl carrier protein domains of chicken fatty acid synthase expressed in Escherichia coli 总被引:3,自引:0,他引:3
M Pazirandeh S S Chirala W Y Huang S J Wakil 《The Journal of biological chemistry》1989,264(30):18195-18201
Fatty acid synthase of animal tissue is a multifunctional enzyme comprised of two identical subunits, each containing seven partial activities and a site for the prosthetic group, 4'-phosphopantetheine (acyl carrier protein). We have recently isolated cDNA clones of chicken fatty acid synthase coding for the dehydratase, enoyl reductase, beta-ketoacyl reductase, acyl carrier protein, and thioesterase domains (Chirala, S.S., Kasturi, R., Pazirandeh, M., Stolow, D.T., Huang, W.Y., and Wakil, S.J. (1989) J. Biol. Chem. 264, 3750-3757). To gain insight into the structure and function of the various domains, the portion of the cDNA coding for the acyl carrier protein and thioesterase domains was expressed in Escherichia coli by using an expression vector that utilizes the phage lambda PL promoter. The recombinant protein was efficiently expressed and purified to near homogeneity using anion-exchange and hydroxyapatite chromatography. As expected from the coding capacity of the cDNA expressed, the protein has a molecular weight of 43,000 and reacts with antithioesterase antibodies. The recombinant thioesterase was found to be enzymatically active and has the same substrate specificity and kinetic properties as the native enzyme of the multifunctional synthase. Treatment of the recombinant protein with alpha-chymotrypsin results in the cleavage of the acyl carrier protein and thioesterase domain junction sequence at exactly the same site as with native fatty acid synthase. The amino acid composition of the purified recombinant protein revealed the presence of 0.6 mol of beta-alanine/mol of protein, indicating partial pantothenylation of the recombinant acyl carrier protein domain. These results indicate that the expressed protein has a conformation similar to the native enzyme and that its folding into functionally active domains is independent of the remaining domains of the multifunctional synthase subunit. These conclusions are consistent with the proposal that the multifunctional synthase gene has evolved from fusion of component genes. 相似文献
16.
beta-Ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called acetoacetyl-ACP synthase) encoded by the fabH gene is thought to catalyze the first elongation reaction (Claisen condensation) of type II fatty acid synthesis in bacteria and plant plastids. However, direct in vivo evidence that KAS III catalyzes an essential reaction is lacking, because no mutant organism deficient in this activity has been isolated. We report the first bacterial strain lacking KAS III, a fabH mutant constructed in the Gram-positive bacterium Lactococcus lactis subspecies lactis IL1403. The mutant strain carries an in-frame deletion of the KAS III active site region and was isolated by gene replacement using a medium supplemented with a source of saturated and unsaturated long-chain fatty acids. The mutant strain is devoid of KAS III activity and fails to grow in the absence of supplementation with exogenous long-chain fatty acids demonstrating that KAS III plays an essential role in cellular metabolism. However, the L. lactis fabH deletion mutant requires only long-chain unsaturated fatty acids for growth, a source of long-chain saturated fatty acids is not required. Because both saturated and unsaturated fatty acids are required for growth when fatty acid synthesis is blocked by biotin starvation (which prevents the synthesis of malonyl-CoA), another pathway for saturated fatty acid synthesis must remain in the fabH deletion strain. Indeed, incorporation of [1-14C]acetate into fatty acids in vivo showed that the fabH mutant retained about 10% of the fatty acid synthetic ability of the wild-type strain and that this residual synthetic capacity was preferentially diverted to the saturated branch of the pathway. Moreover, mass spectrometry showed that the fabH mutant retained low levels of palmitic acid upon fatty acid starvation. Derivatives of the fabH deletion mutant strain were isolated that were octanoic acid auxotrophs consistent with biochemical studies indicating that the major role of FabH is production of short-chain fatty acid primers. We also confirmed the essentiality of FabH in Escherichia coli by use of a plasmid-based gene insertion/deletion system. Together these results provide the first genetic evidence demonstrating that FabH conducts the major condensation reaction in the initiation of type II fatty acid biosynthesis in both Gram-positive and Gram-negative bacteria. 相似文献
17.
McGuire KA Siggaard-Andersen M Bangera MG Olsen JG von Wettstein-Knowles P 《Biochemistry》2001,40(33):9836-9845
beta-Ketoacyl-[acyl carrier protein (ACP)] synthase forms new carbon-carbon bonds in three steps: transfer of an acyl primer from ACP to the enzyme, decarboxylation of the elongating substrate and its condensation with the acyl primer substrate. Six residues of Escherichia coli beta-ketoacyl-ACP synthase I (KAS I) implicated in these reactions were subjected to site-directed mutagenesis. Analyses of the abilities of C163A, C163S, H298A, D306A, E309A, K328A, and H333A to carry out the three reactions lead to the following conclusions. The active site Cys-163 is not required for decarboxylation, whereas His-298 and His-333 are indispensable. Neither of the histidines is essential for increasing the nucleophilicity of Cys-163 to enable transfer of the acyl primer substrate. Maintenance of the structural integrity of the active site by Asp-306 and Glu-309 is required for decarboxylation but not for transfer. One function of Lys-328 occurs very early in catalysis, potentially before transfer. These results in conjunction with structural analyses of substrate complexes have led to a model for KAS I catalysis [Olsen, J. G., Kadziola, A., von Wettstein-Knowles, P., Siggaard-Andersen, M., and Larsen, S. (2001) Structure 9, 233-243]. Another facet of catalysis revealed by the mutant analyses is that the acyl primer transfer activity of beta-ketoacyl-ACP synthase I is inhibited by free ACP at physiological concentrations. Differences in the inhibitory response by individual mutant proteins indicate that interaction of free ACP with Cys-163, Asp-306, Glu-309, Lys-328, and His-333 might form a sensitive regulatory mechanism for the transfer of acyl primers. 相似文献
18.
A fluorescent thiol reagent, N-(7-dimethylamino-4-methylcoumarinyl) maleimide, was used to label the acyl carrier site of the bacterial fatty acid synthetase from Brevibacterium ammoniagenes. The reagent bound preferentially to the 4'-phosphopantetheine thiol group of the acyl carrier domain and irreversively inactivated the enzyme. The modified enzyme was cleaved by proteinases for the mapping of the labeled site. The fluorescent fragment was readily detected on a polyacrylamide gel after electrophoresis. The region of 45 kDa containing the 4'-phosphopantetheine was located on the polypeptide at around two-thirds of the full length from the N-terminal. 相似文献
19.
Qiu X Janson CA Konstantinidis AK Nwagwu S Silverman C Smith WW Khandekar S Lonsdale J Abdel-Meguid SS 《The Journal of biological chemistry》1999,274(51):36465-36471
Beta-ketoacyl-acyl carrier protein synthase III (FabH), the most divergent member of the family of condensing enzymes, is a key catalyst in bacterial fatty acid biosynthesis and a promising target for novel antibiotics. We report here the crystal structures of FabH determined in the presence and absence of acetyl-CoA. These structures display a fold that is common for condensing enzymes. The observed acetylation of Cys(112) proves its catalytic role and clearly defines the primer binding pocket. Modeling based on a bound CoA molecule suggests catalytic roles for His(244) and Asn(274). The structures provide the molecular basis for FabH substrate specificity and reaction mechanism and are important for structure-based design of novel antibiotics. 相似文献
20.
McAllister KA Peery RB Meier TI Fischl AS Zhao G 《The Journal of biological chemistry》2000,275(40):30864-30872
Acyl carrier protein synthase (AcpS) is an essential enzyme in the biosynthesis of fatty acids in all bacteria. AcpS catalyzes the transfer of 4'-phosphopantetheine from coenzyme A (CoA) to apo-ACP, thus converting apo-ACP to holo-ACP that serves as an acyl carrier for the biosynthesis of fatty acids and lipids. To further understand the physiological role of AcpS, we identified, cloned, and expressed the acpS and acpP genes of Streptococcus pneumoniae and purified both products to homogeneity. Both acpS and acpP form operons with the genes whose functions are required for other cellular metabolism. The acpS gene complements an Escherichia coli mutant defective in the production of AcpS and appears to be essential for the growth of S. pneumoniae. Gel filtration and cross-linking analyses establish that purified AcpS exists as a homotrimer. AcpS activity was significantly stimulated by apo-ACP at concentrations over 10 microm and slightly inhibited at concentrations of 5-10 microm. Double reciprocal analysis of initial velocities of AcpS at various concentrations of CoA or apo-ACP indicated a random or compulsory ordered bi bi type of reaction mechanism. Further analysis of the inhibition kinetics of the product (3',5'-ADP) suggested that it is competitive with respect to CoA but mixed (competitive and noncompetitive) with respect to apo-ACP. Finally, apo-ACP bound tightly to AcpS in the absence of CoA, but CoA failed to do so in the absence of apo-ACP. Together, these results suggest that AcpS may be allosterically regulated by apo-ACP and probably proceeds by an ordered reaction mechanism with the first formation of the AcpS-apo-ACP complex and the subsequent transfer of 4'-phosphopantetheine to the apo-ACP of the complex. 相似文献