首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从12S rRNA基因序列推测鹭科13种鸟类的系统发生关系   总被引:11,自引:0,他引:11  
对鹭科12个种的线粒体12S rRNA基因全长约975bp的序列进行了测定,并从GenBank获得黄顶夜鹭12S rRNA基因全序列。比对后的序列长993bp,含363变异位点,288个多态位点,187个简约信息位点。使用邻接法和最大简约法重建的分子系统树将13种鹭聚为2支:第一支包括白鹭、中白鹭、大白鹭、池鹭、牛背鹭、苍鹭、草鹭、夜鹭、黄顶夜鹭,第二支由黄苇渴Gan、黑苇Gan、栗苇Gan、大麻Gan组成。结果提示将鹭科分为鹭亚科和Gan亚科的传统观点是合理的,不支持Payne将鹭科分为日鹭亚科(Ardeinae)、夜鹭亚科(Nycticracinae)、Gan亚科(Botaurinae)和虎鹭亚科(Tigrisomatinae)的观点。进一步的分析表明:白鹭在系统演化中要早于大白鹭和中白鹭分支出来,大白鹭和中白鹭与苍鹭、草鹭和牛背鹭间的亲缘关系较近,而与白鹭较远,支持Sibley(1990)将大白鹭和中白鹭作为独立的大白鹭属(Casmerodius)和中白鹭属(Mesophoyx)的建议;黑Gan、栗苇Gan与黄苇Gan在系统发生中构成一单系群,提示将黑Gan置于苇Gan属(Ixobrychus)是合适的[动物学报49(2):205—210,2003]。  相似文献   

2.
Based on partial sequences of the 12S and 16S ribosomal RNA genes, we estimated phylogenetic relationships among brown frogs of the Rana temporaria group from China. From the phylogenetic trees obtained, we propose to include Rana zhengi in the brown frogs. Monophyly of the brown frogs was not unambiguously supported, but four well-supported clades (A, B, C, and D) always emerged, although relationships among them remained unresolved. Clade A contained brown frogs with 24 chromosomes and was split into two distinct subclades (Subclade A-1: R. chensinensis and R. huanrenensis; Subclade A-2: R. dybowskii). Polytomous relationships among populations of R. chensinensis and R. huanrenensis suggested the necessity of further taxonomic assessment. Rana kunyuensis proved to be the sister group to R. amurensis, and these two species formed Clade B. Clade C was composed of R. omeimontis and R. chaochiaoensis, and Clade D included R. sauteri, which has been placed in other ranid genera. These relationships did not change after adding published data, and monophyly of Subclade A-1, A-2, and other East Asian brown frogs with 24 chromosomes (R. pirica and R. ornativentris) was ascertained, though their relationships were unresolved. Clade C, together with R. japonica and R. longicrus, also formed a monophyletic group. Brown frogs related to Clades A and C were estimated to have dispersed from continental Asia to adjacent regions through multiple events.  相似文献   

3.
The presence of Pneumocystis organisms was detected by nested-PCR at mitochondrial large subunit (mtLSU) rRNA gene in 23 respiratory samples from Asian macaques representing two species: Macaca mulatta and M. fascicularis. A very high level of sequence heterogeneity was detected with 18 original sequence types. Two genetic groups of Pneumocystis could be distinguished from the samples. Within each group, the extent of genetic divergence was low (2.5+/-1.4% in group 1 and 2.3+/-1.7% in group 2). Genetic divergences were systematically higher when macaque-derived sequence types were compared with Pneumocystis mtLSU sequences from other primate species (from 5.3+/-2.7% to 19.3+/-3.0%). The two macaque-derived groups may be considered as distinct Pneumocystis species. Surprisingly, these Pneumocystis species were recovered from both M. mulatta and M. fascicularis suggesting that host-species restriction may not systematically occur in the genus Pneumocystis. Alternatively, these observations question about the species concept in macaques.  相似文献   

4.
India has a diverse caecilian fauna, including representatives of three of the six currently recognized families, the Caeciliidae, Ichthyophiidae, the endemic Uraeotyphlidae, but previous molecular phylogenetic studies of caecilians have not included sequences for any Indian caecilians. Partial 12S and 16S mitochondrial gene sequences were obtained for a single representative of each of the caecilian families found in India and aligned against previously reported sequences for 13 caecilian species. The resulting alignment (16 taxa, 1200 sites, of which 288 cannot be aligned unambiguously) was analyzed using parsimony, maximum-likelihood, and distance methods. As judged by bootstrap proportions, decay indices, and leaf stabilities, well-supported relationships of the Indian caecilians are recovered from the alignment. The data (1) corroborate the hypothesis, based on morphology, that the Uraeotyphlidae and Ichthyophiidae are sister taxa, (2) recover a monophyletic Ichthyophiidae, including Indian and South East Asian representatives, and (3) place the Indian caeciliid Gegeneophis ramaswamii as the sister group of the caeciliid caecilians of the Seychelles. Rough estimates of divergence times suggest an origin of the Uraeotyphlidae and Ichthyophiidae while India was isolated from Laurasia and Africa and are most consistent with an Indian origin of these families and subsequent dispersal of ichthyophiids into South East Asia.  相似文献   

5.
The genus Paramecium includes species that are well known and very common in freshwater environments. Species of Paramecium are morphologically divided into two distinct groups: the "bursaria" subgroup (foot-shaped) and the "aurelia" subgroup (cigar-shaped). Their placement within the class Oligohymenophorea has been supported by the analysis of the small subunit rRNA gene sequence of P. tetraurelia. To confirm the stability of this placement and to resolve relationships within the genus, small subunit rRNA gene sequences of P. bursaria, P. calkinsi, P. duboscqui, P. jenningsi, P. nephridiatum, P. primaurelia, and P. polycaryum were determined and aligned. Trees constructed using distance-matrix, maximum-likelihood, and maximum-parsimony methods all depicted the genus as a monophyletic group, clustering with the other oligohymenophorean taxa. Within the Paramecium clade, P. bursaria branches basal to the other species, although the remaining species of the morphologically defined "bursaria" subgroup do not group with P. bursaria, nor do they form a monophyletic subgroup. However, the species of the "aurelia" subgroup are closely related and strongly supported as a monophyletic group.  相似文献   

6.
A number of phylogenies exist for cockroaches that differ in the postulated relationships among families and genera. The relationship of the wood-feeding genus, Cryptocercus, to other cockroach families and to termites, has generated considerable debate. Grandcolas (1994), based on morphological analysis, synonymized the family Cryptocercidae with Polyphagidae and placed the genus Cryptocercus in the subfamily Polyphaginae. To determine if an independent set of characters supports the placement of Cryptocercus in Polyphaginae, a phylogenetic analysis of relationships among representative genera of the five cockroach families was undertaken. DNA sequence of a -430 base pair portion of the mitochondrial small ribosomal subunit gene from representatives of Blattidae, Blattellidae, Blaberidae and Cryptocercus, previously published by Kambhampati (1995) and Kambhampati et al. (1996), and the homologous sequence from representatives of Polyphagidae were used in the analysis. A total of twenty cockroach taxa and three termite genera were included in the study. Because a recent study showed that Cryptocercus punctulatus consists of a species complex, DNA sequence from four individuals collected in different parts of the U.S.A. was included in the study. The trees estimated from parsimony and neighbour-joining analyses indicated that Cryptocercus is a monophyletic clade which is most closely related to members of Blattidae. Polyphagidae is indicated as a sister group to the Blattidae + Cryptocercus complex, suggesting that Polyphagidae may belong to the superfamily Blattoidea rather than to Blaberoidea as proposed by McKittrick (1964). Blaberidae and Blattellidae were sister groups as previously proposed. Based on the present analysis, I propose that the genus Cryptocercus be retained in the family Cryptocercidae. Cockroaches  相似文献   

7.
Several members of the dipteran family Tephritdae are serious pests because females lay eggs in ripening fruit. The genus Bactrocera is one of the largest within the family with over 500 described species arranged in 28 subgenera. The phylogenetic relationships among the various species and subgenera, and the monophyly of specific groups have not been examined using a rigorous phylogenetic analysis. Therefore, phylogenetic relationships among 24 Bactrocera species belonging to 9 subgenera were inferred from DNA sequence of portions of the mitochondrial 16S rRNA, cytochrome oxidase II, tRNA(Lys), and tRNA(Asp) genes. Two morphological characters that traditionally have been used to define the four groups within the subgenus Bactrocera were evaluated in a phylogenetic context by mapping the character states onto the parsimony tree. In addition, the evolutionary trend in male-lure response was evaluated in a phylogenetic context. Maximum parsimony analyses suggested the following relationships: (1) the genus Bactrocera is monophyletic, (2) the subgenus B. (Zeugodacus) is paraphyletic, (3) the subgenus B. (Daculus) is a sister group to subgenus B. (Bactrocera), and (4) the subgenus B. (Bactrocera) is monophyletic. The mapping analyses suggested that the morphological characters exhibit a simple evolutionary transition from one character state to another. Male-lure response was identified as being a labile behavior that has been lost on multiple occasions. Cue-lure response was plesiomorphic to methyl-eugenol response, and the latter has evolved independently within the Bactrocera and Zeugodacus groups of subgenera. The implications of our results for devising a coherent, consolidated classification for Bactrocera is discussed.  相似文献   

8.
The conifers, which traditionally comprise seven families, are the largest and most diverse group of living gymnosperms. Efforts to systematize this diversity without a cladistic phylogenetic framework have often resulted in the segregation of certain genera and/or families from the conifers. In order to understand better the relationships between the families, we performed cladistic analyses using a new data set obtained from 28S rRNA gene sequences. These analyses strongly support the monophyly of conifers including Taxaceae. Within the conifers, the Pinaceae are the first to diverge, being the sister group of the rest of conifers. A recently discovered Australian genus Wollemia is confirmed to be a natural member of the Araucariaceae. The Taxaceae are nested within the conifer clade, being the most closely related to the Cephalotaxaceae. The Taxodiaceae and Cupressaceae together form a monophyletic group. Sciadopitys should be considered as constituting a separate family. These relationships are consistent with previous cladistic analyses of morphological and molecular (18S rRNA, rbcL) data. Furthermore, the well-supported clade linking the Araucariaceae and Podocarpaceae, which has not been previously reported, suggests that the common ancestor of these families, both having the greatest diversity in the Southern Hemisphere, inhabited Gondwanaland.  相似文献   

9.
DNA sequence comparisons of two mitochondrial DNA genes were used to infer phylogenetic relationships among four species of mullids. Approximately 238 bp of the mitochondrial 16S ribosomal RNA (rRNA) and 261 bp of the cytochrome b (cytb) genes were sequenced from representatives of three mullid genera (Mullus, Upeneus, Pseudopeneus), present in the Mediterranean Sea. Trees were constructed using three methods: maximum likelihood (ML), neighbor joining (NJ) and parsimony (MP). The results of the analyses of these data together with published data of the same mtDNA segments of two other perciform species (Sparus aurata, Perca fluviatilis), support the previous taxonomic classification of the three genera examined, as well as the classification of the two red mullet species in the same genus.  相似文献   

10.
Phylogenetic relationships among Syndermata have been extensively debated, mainly because the sister-group of the Acanthocephala has not yet been clearly identified from analyses of morphological and molecular data. Here we conduct phylogenetic analyses on samples from the 4 classes of Acanthocephala (Archiacanthocephala, Eoacanthocephala, Polyacanthocephala, and Palaeacanthocephala) and the 3 Rotifera classes (Bdelloidea, Monogononta, and Seisonidea). We do so using small-subunit (SSU) and large-subunit (LSU) ribosomal DNA and cytochrome c oxidase subunit 1 (cox 1) sequences. These nuclear and mitochondrial DNA sequences were obtained for 27 acanthocephalans, 9 rotifers, and representatives of 6 phyla that were used as outgroups. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses were conducted on the nuclear rDNA(SSU+LSU) and the combined sequence dataset(SSU+LSU+cox 1 genes). Phylogenetic analyses of the combined rDNA and cox 1 data uniformly provided strong support for a clade including rotifers plus acanthocephalans (Syndermata). Strong support was also found for monophyly of Acanthocephala in analyses of the combined dataset or rDNA sequences alone. Within the Acanthocephala the monophyletic grouping of the representatives of each class was strongly supported. Our results depicted Archiacanthocephala as the sister-group to the remaining acanthocephalans. Analyses of the combined dataset recovered a sister-group relationship between Acanthocephala and Bdelloidea by parsimony, likelihood, and Bayesian methods. Support for this clade was generally strong. Alternative topologies that depicted a different rotifer sister-group of Acanthocephala (or monophyly of Rotifera) were significantly worse. In this paraphyletic assemblage of rotifers, the relative positions of Seisonidea and Monogononta to the clade Bdelloidea+Acanthocephala were inconsistent among trees based on different inference methods. These results indicate that Bdelloidea is the free-living sister-group to acanthocephalans, which should prove key for comparative investigations of the morphological, molecular, and ecological changes accompanying the evolution of parasitism.  相似文献   

11.
The phylogenetic relationships of microhylid frogs are poorly understood. The first molecular phylogeny for continental African microhylids is presented, including representatives of all subfamilies, six of the eight genera, and the enigmatic hemisotid Hemisus. Mitochondrial 12S and 16S rRNA sequence data were analysed using parsimony, likelihood and Bayesian methods. Analyses of the data are consistent with the monophyly of all sampled subfamilies and genera. Hemisus does not nest within either brevicipitines or non-brevicipitines. It is possibly the sister group to brevicipitines, in which case brevicipitines might not be microhylids. Phrynomantis and Hoplophryne potentially group with non-African, non-brevicipitine microhylids, in agreement with recent morphological and molecular data. Within brevicipitines, Breviceps is recovered as the sister group to a clade of Callulina+Spelaeophryne+Probreviceps. The relationships among the genera within this latter clade are unclear, being sensitive to the method of analysis. Optimal trees suggest the Probreviceps macrodactylus subspecies complex might be paraphyletic with respect to P. uluguruensis, corroborating preliminary morphological studies indicating that P. m. rungwensis may be a distinct species. P. m. loveridgei may be paraphyletic with respect to P. m. macrodactylus, though this is not strongly supported. Some biogeographic hypotheses are examined in light of these findings.  相似文献   

12.
We investigate phylogenetic relationships among hornworts, liverworts and mosses, and their relationships to other green plant groups, by analysis of nucleotide variation in complete 18s rRNA gene sequences of three green algae, two hornworts, seven liverworts, nine mosses, and six tracheophytes. Parsimony and maximum-likelihood analyses yield a single optimal tree in which the hornworts are resolved as the basal group among land plants, and the liverworts and mosses are sister taxa that together form the sister clade to the tracheophytes. This phylogeny is internally robust as indicated by decay indices and by comparison (using both parsimony and likelihood criteria) to topologies representing five alternative hypotheses of bryophyte relationships. We discuss some possible reasons for differences between the phylogeny inferred from the rRNA data and those inferred from other character sets.  相似文献   

13.
The phylogenetic relationships among threePseudorasbora fishes (Cyprinidae, Sarcocheiichthyinae) occurring in Japan (P. parva, P. pumila pumila andP. pumila subsp. sensu Nakamura [1963]) were inferred from nucleotide sequences of the mitochondrial 16S rRNA gene. The sequences. of 1240 bp, were determined and compared for 22 specimens from 2–8 populations for each taxon, with a singlePungtungia herzi specimen as an outgroup. A total of 171 sites (13.8%) were variable among the specimens, but only 0–2 sites within each population. The phylogenetic relationships estimated by neighbor-joining, maximum-parsimony and maximum-likelihood methods confirmed a sister relationship between the twoP. pumila subspecies, with a high level of confidence. However, their genetic distinction from each other (4.1±0.4SD % sequence difference on average) was at a level similar to that between them andP. parva (5.9±0.5%). The geographic distribution of the twoP. pumila subspecies, which are separated by the Fossa Magna region, suggests that the genetic divergence of the two subspecies originated from a vicariant process separating the freshwater ichthyofaunas of eastern and western Honshu.Pseudorasbora parva populations were divided into two genetic groups (1.8±0.2% sequence difference), one group comprising continental and part of the Japanese populations, and the other the remaining Japanese populations. This suggests that at least two genetically divergent lineages had been originally distributed in Japan, but a strong possibility remains that the present situation has resulted from artificial transplantation.  相似文献   

14.
用12S rRNA基因序列研究斑腿蝗科二属六种的进化关系   总被引:6,自引:0,他引:6  
采用DNA测序技术测定了中国斑腿蝗科昆虫6种和斑翅蝗科的红胫小车蝗线粒体12S rRNA基因长约345 bp片段的序列。在获得的345 bp的序列中,A+T约占71.8%,其中135个核苷酸位点存在变异 (约占39.1%)。PAUP4.0b数据分析软件构建该6种蝗虫的MP和NJ分子系统树显示,稻蝗属和蔗蝗属各为独立的一支。在稻蝗属一支中,中华稻蝗与山稻蝗关系很近,而与小稻蝗关系较远,这与形态学结果相吻合;在蔗蝗属一支中,异歧蔗蝗与斑角蔗蝗亲缘关系较近,而与等歧蔗蝗关系较远,这与形态学研究结果并不吻合,有待进一步的研究。  相似文献   

15.
Blood and tissue samples of 40 individuals including 27 parrot species (15 genera; 3 subfamilies) were collected in Indonesia. Their phylogenetic relationships were inferred from 907 bp of the mitochondrial cytochrome-b gene, using the maximum-parsimony method, the maximum-likelihood method and the neighbor-joining method with Kimura two-parameter distance. The phylogenetic analysis revealed that (1) cockatoos (subfamily Cacatuinae) form a monophyletic sister group to other parrot groups; (2) within the genus Cacatua, C. goffini and C. sanguinea form a sister group to a clade containing other congeners; (3) subfamily Psittacinae emerged as paraphyletic, consisting of three clades, with a clade of Psittaculirostris grouping with subfamily Loriinae rather than with other Psittacinae; (4) lories and lorikeets (subfamily Loriinae) emerged as monophyletic, with Charmosyna placentis a basal sister group to other Loriinae, which comprised the subclades Lorius; Trichoglossus+Eos; and Chalcopsitta+ Pseudeos.  相似文献   

16.
The present study explores the utility of mitochondrial COI gene sequences to reveal phylogenetic and phylogeographic relationships for the entire European freshwater crayfish genus Austropotamobius. The two traditional taxa, Austropotamobius pallipes and Austropotamobius torrentium, were monophyletic, showing similar genetic diversity, with 28 and 25 haplotypes, respectively, and an uncorrected average pairwise divergence of 0.059 and 0.041. A third distinct haplotype clade, in sister relation to A. torrentium, was discovered at the Upper Kolpa drainage in the northern Dinaric area. All populations north and west of the Alps are genetically impoverished (nucleotide diversity (pi)=0.000-0.001), while southern populations are more diverse (pi=0.001-0.034). A. pallipes reaches the highest diversity in the region of Istra, probably its primary center of radiation. The genetic diversity center for A. torrentium is the southern Balkan peninsula. Other potential glacial refugia were identified in Southern France, Northwestern Italy, the Apennine Peninsula, and in the northern Dinaric area. The Iberian Peninsula has been stocked artificially from Northern Italy. Three main periods of radiation were tentatively identified: late Miocene/early Pliocene for the divergence of species and main lineages, the Pleistocene for the divergence within populations south from Alps, and a postPleistocene expansion north and west from Alps.  相似文献   

17.
A phylogeny of the species of the nase genus Chondrostoma was constructed from a complete mitochondrial cytochrome b gene (1140 bp). Molecular phylogeny was used to revise the current systematics of this group, and to infer a biogeographical model of the Mediterranean area during the Cenozoic period. We confirmed the monophyly of the genus Chondrostoma, and defined seven different lineages within it: Polylepis, Arcasii, Lemmingii, Toxostoma, Nasus, C. genei, and C. soetta. The separation of main lineages within Chondrostoma occurred in the Middle-Upper Miocene, approximately 11 million years ago, while the greatest species radiation took place in the Pliocene close to the time the current drainages system were created. It is unlikely that this genus experienced an extensive dispersal during the Messinian, in the Lago-Mare Phase. Given the level of current knowledge, a biogeographical model constructed on the basis of vicariant events seems more realistic than does a dispersalist model.  相似文献   

18.
The small subunit rDNAs of five species belonging to the Euplotidae and eight species of the Oxytrichidae were sequenced to obtain a more detailed picture of the phylogenetic relationships within the Spirotrichea (Ciliophora). Various tree reconstruction algorhythms yielded nearly identical topologies. All Euplotidae were separated from the other Spirotrichea by a deep split. Further, a large genetic distance between the marine genus Moneuplotes and the freshwater species of Euplotoides was found. Differences between the methods used occurred only within the Oxytrichidae. Whereas the monophyly of the Stylonychinae was supported in all trees, the monophyly of the Oxytrichinae was not. However, the molecular data support the morphological and ontogenetic evidence that the pattern of 18 frontal-ventral-transversal cirri evolved in the stemline of the Oxytrichidae and was modified several times independently. Our results are also in agreement with taxonomic revisions: the separation of both Sterkiella nova from Oxytricha and Tetmemena pustulata from Stylonychia.  相似文献   

19.
20.
Phylogenetic relationships among 20 Australian species of the family Percichthyidae were investigated from sequence data of two portions of the mitochondrial 12S rRNA gene. The molecular data indicate that Australian genera within this family cluster into three distinct clades. The first clade is composed of some species currently ascribed to the genus Macquaria, along with Nannatherina, Nannoperca, and Bostockia, the second of Maccullochella and two catadromous Macquaria species, and the third of Gadopsis. However, the positioning of Gadopsis within this family was unresolved. Monophyly within each genus was well supported, except for Macquaria, which is clearly polyphyletic. The molecular data were used to examine two hypotheses of Australian percichthyid evolution and favor a freshwater origin for the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号