首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disease. It is thought to be mediated by CD4+ Th1/Th17 cells. More recently, cells of the innate immune system such as dendritic cells (DCs) and natural killer (NK) cells have been in focus. Glatiramer acetate (GA) is an approved drug for treating MS patients.

Methodology/Principal Findings

In the current study we examined the activities of NK and DCs in nine relapsing remitting MS patients for up to one year after initiation of GA treatment. We observed that NK cells isolated from most of these patients have increased cytotoxic activity against K562 cells. Further analysis showed that the same NK cells lysed both autologous immature (i) and mature (m) DCs. In most patients this increased activity was correlated with increased NK cell activating cytotoxicity receptors such as NKp30, NKp44, NKp46 and NKG2D, and reduced expression of the inhibitory molecule CD158 on the surface of these NK cells. The expression of HLA-DR was increased on iDCs and mDCs in the majority of the patients, but no consistency was observed for the expression of HLA-I or HLA-E. Also, the co-stimulatory receptors CD80, CD83 or CD86 expression was down-regulated on iDCs and mDCs in most cases. Further, the expression of CCR6 was increased on mDCs at later time points of therapy (between 32–48 weeks).

Conclusions/Significance

Our results are the first showing the effects of GA treatment on NK cells in MS patients, which may impact future use of this and other drugs to treat this disease.  相似文献   

2.
The aims of this study are to examine the effect of sphingosine 1-phosphate (S1P) on IL-2-activated natural killer (NK) cell lysis of K562 tumor cells and immature dendritic cells (iDCs), and to investigate the mechanisms involved in S1P activity. Our results show that S1P protected K562 cells or iDCs from NK cell lysis, which was reversed by FTY720 and SEW2871, the antagonists of S1P1. S1P did not modulate the expression of NKG2D, NKp30, NKp44 or CD158 on the surface of NK cells, and neither affected the expression of CD80, CD83, or CD86 on the surface of DCs. In contrast, it increased the expression of HLA-I and HLA-E on DCs, an activity that was inhibited by FTY720 or SEW2871. Similarly, the inhibitory effect of S1P for NK cell lysis of K562 cells was directed toward S1P1 expressed on the tumor cells but not on NK cells. Further analysis indicates that NK cells secreted various cytokines and chemokines with various intensities: (1) low (IL-4, IL-6, IL-12, TNF-α and MCP-1); (2) intermediate (IL-1β, IL-10, TGF-β1, and IL-17A); (3) high (IFN-γ, and MIP-1α); and (4) very high (MIP-1β). S1P significantly reduced the release of IL-17A and IFN-γ from NK cells, but this inhibition was S1P1-independent. These results indicate that S1P is an anti-inflammatory molecule, and that S1P1 is important for the interaction among NK cells and tumor cells or DCs leading to up-regulation of HLA-I and HLA-E on the surface of DCs, but not in S1P inhibition of the release of inflammatory cytokines from NK cells. Further, the results suggest that FTY720 and SEW2871 may potentially be used as prophylactic and/or therapeutic drugs to treat cancer patients.  相似文献   

3.
Dendritic cells (DC) play an important role in innate and adaptive immunity, interacting with T cells, NK, and NKT cells. A critical step in the interaction of the parasitic protozoa Leishmania with their host is the evasion of both innate and adaptive immunity, producing a long-lasting chronic infection. There is growing evidence that these parasites can modify the Ag-presenting and immunoregulatory functions of DCs. The cells and mechanisms involved in innate immune response against Leishmania are still poorly understood. In this study, we investigated how Leishmania infantum infection affects DC interactions with NK and invariant NKT (iNKTs) cells in humans. We found that infected immature DCs (iDCs) do not up-regulate HLA class I molecules. Despite this, iDCs become resistant to killing mediated by autologous NK cells due to the up-regulation of HLA-E expression, which protects target cells from NK-mediated lysis through interaction with the inhibitory receptor CD94/NKG2A. Furthermore, iDCs infected with L. infantum up-regulate CD1d cell surface expression and consequently can be efficiently recognized and killed by iNKT cells that produce IFN-gamma. These data suggest that L. infantum could be able to evade NK recognition; in contrast, iNKTs may play an important role in the immune response against Leishmania.  相似文献   

4.
In genetically predisposed individuals, ingestion of wheat gliadin provokes a T‐cell‐mediated enteropathy, celiac disease. Gliadin fragments were previously reported to induce phenotypic maturation and Th1 cytokine production by human dendritic cells (DCs) and to boost their capacity to stimulate allogeneic T cells. Here, we monitor the effects of gliadin on migratory capacities of DCs. Using transwell assays, we show that gliadin peptic digest stimulates migration of human DCs and their chemotactic responsiveness to the lymph node‐homing chemokines CCL19 and CCL21. The gliadin‐induced migration is accompanied by extensive alterations of the cytoskeletal organization, with dissolution of adhesion structures, podosomes, as well as up‐regulation of the CC chemokine receptor (CCR) 7 on cell surface and induction of cyclooxygenase (COX)‐2 enzyme that mediates prostaglandin E2 (PGE2) production. Blocking experiments confirmed that gliadin‐induced migration is independent of the TLR4 signalling. Moreover, we showed that the α‐gliadin‐derived 31–43 peptide is an active migration‐inducing component of the digest. The migration promoted by gliadin fragments or the 31–43 peptide required activation of p38 mitogen‐activated protein kinase (MAPK). As revealed using p38 MAPK inhibitor SB203580, this was responsible for DC cytoskeletal transition, CCR7 up‐regulation and PGE2 production in particular. Taken together, this study provides a new insight into pathogenic features of gliadin fragments by demonstrating their ability to promote DC migration, which is a prerequisite for efficient priming of naive T cells, contributing to celiac disease pathology.  相似文献   

5.
Analysis of HLA-E expression in human tumors   总被引:9,自引:1,他引:8  
  相似文献   

6.
Increasing evidence shows that NK cells regulate adaptive immunity, but the underlying mechanisms are not well understood. In this study, we show that activated human NK cells suppress autologous naive CD4 T cell proliferation in response to allogeneic dendritic cells (DCs) by selectively killing Ag-activated T cells. Naive CD4 T cells, which were initially resistant to NK cell-mediated cytotoxicity, became substantially susceptible to NK cells within a day after priming with DCs. Ag-activated T cells showed various degrees of susceptibility to NK cells. After 1 d of priming with LPS-matured DCs, T cells were less susceptible to NK cells than were T cells primed with TNF-α-matured DCs. Subsequently at day 3, Ag-activated T cells regained resistance to NK cells. The level of HLA-E expression on Ag-activated T cells was closely correlated with resistance to NK cells. HLA-E was highly expressed at day 1 by T cells primed with LPS-matured DCs but not by T cells primed with TNF-α-matured DCs. An Ab blockade revealed a critical role for the HLA-E-NKG2A interaction in the protection of Ag-activated T cells from NK cells. Collectively, this study demonstrates that NK cells impact adaptive immunity through the finely controlled kinetics of HLA-E expression on T cells. Thus, HLA-E may be a new target for immunoregulation.  相似文献   

7.
HLA-E are nonclassical MHC molecules with poorly characterized tissue distribution and functions. Because of their capacity to bind the inhibitory receptor, CD94/NKG2A, expressed by NK cells and CTL, HLA-E molecules might play an important role in immunomodulation. In particular, expression of HLA-E might favor tumor cell escape from CTL and NK immunosurveillance. To address the potential role of HLA-E in melanoma immunobiology, we assessed the expression of these molecules ex vivo in human melanoma biopsies and in melanoma and melanocyte cell lines. Melanoma cell lines expressed no or low surface, but significant intracellular levels of HLA-E. We also report for the first time that some of them produced a soluble form of this molecule. IFN-gamma significantly increased the surface expression of HLA-E and the shedding of soluble HLA-E by these cells, in a metalloproteinase-dependent fashion. In contrast, melanocyte cell lines constitutively expressed HLA-E molecules that were detectable both at the cell surface and in the soluble form, at levels that were poorly affected by IFN-gamma treatment. On tumor sections, a majority of tumor cells of primary, but a low proportion of metastatic melanomas (30-70 and 10-20%, respectively), expressed HLA-E. Finally, HLA-E expression at the cell surface of melanoma cells decreased their susceptibility to CTL lysis. These data demonstrate that HLA-E expression and shedding are normal features of melanocytes, which are conserved in melanoma cells of primary tumors, but become dependent on IFN-gamma induction after metastasis. The biological significance of these findings warrants further investigation.  相似文献   

8.

Background

Apart from the platelet/endothelial cell adhesion molecule 1 (PECAM-1, CD31), endoglin (CD105) and a positive factor VIII-related antigen staining, human primary and immortalized macro- and microvascular endothelial cells (ECs) differ in their cell surface expression of activating and inhibitory ligands for natural killer (NK) cells. Here we comparatively study the effects of irradiation on the phenotype of ECs and their interaction with resting and activated NK cells.

Methodology/Principal Findings

Primary macrovascular human umbilical vein endothelial cells (HUVECs) only express UL16 binding protein 2 (ULBP2) and the major histocompatibility complex (MHC) class I chain-related protein MIC-A (MIC-A) as activating signals for NK cells, whereas the corresponding immortalized EA.hy926 EC cell line additionally present ULBP3, membrane heat shock protein 70 (Hsp70), intercellular adhesion molecule ICAM-1 (CD54) and HLA-E. Apart from MIC-B, the immortalized human microvascular endothelial cell line HMEC, resembles the phenotype of EA.hy926. Surprisingly, primary HUVECs are more sensitive to Hsp70 peptide (TKD) plus IL-2 (TKD/IL-2)-activated NK cells than their immortalized EC counterpatrs. This finding is most likely due to the absence of the inhibitory ligand HLA-E, since the activating ligands are shared among the ECs. The co-culture of HUVECs with activated NK cells induces ICAM-1 (CD54) and HLA-E expression on the former which drops to the initial low levels (below 5%) when NK cells are removed. Sublethal irradiation of HUVECs induces similar but less pronounced effects on HUVECs. Along with these findings, irradiation also induces HLA-E expression on macrovascular ECs and this correlates with an increased resistance to killing by activated NK cells. Irradiation had no effect on HLA-E expression on microvascular ECs and the sensitivity of these cells to NK cells remained unaffected.

Conclusion/Significance

These data emphasize that an irradiation-induced, transient up-regulation of HLA-E on macrovascular ECs might confer protection against NK cell-mediated vascular injury.  相似文献   

9.
NK cells are potent activators of dendritic cells (DCs), but it remains obscure how third-party cells affect the ability of NK cells to modulate DC functions. We show here that NK cells derived from healthy donors (N-NK), when cocultured with human liver epithelial cells, induced maturation as well as activation of DCs, such as increased migratory capacity as well as T cell stimulatory activity. In contrast, NK cells from chronic hepatitis C virus-infected donors (HCV-NK) were not capable of activating DCs under the same conditions. In comparison to N-NK, HCV-NK showed higher expression of CD94/NKG2A and produced IL-10 and TGFbeta when cultured with hepatic cells, most of which express HLA-E, a ligand for CD94/NKG2A. Blockade of NKG2A restored the ability of HCV-NK to activate DCs, which appeared to result from the reduced NK cell production of IL-10 and TGFbeta. The blockade also endowed HCV-NK with an ability to drive DCs to generate Th1-polarized CD4+ T cells. These findings show that NK cell modulation of DCs is regulated by third-party cells through NK receptor and its ligand interaction. Aberrant expression of NK receptors may have an impact on the magnitude and direction of DC activation of T cells under pathological conditions, such as chronic viral infection.  相似文献   

10.
11.
12.
13.
The potential of bone marrow cell-derived immature dendritic cells (myeloid iDCs) in modulating the efficacy of retinal cell transplantation therapy was investigated. (1) In vitro, myeloid iDCs but not BMCs enhanced the survival and proliferation of embryonic retinal cells, and the expression of various neurotrophic factors by myeloid iDCs was confirmed with RT-PCR. (2) In subretinal transplantation, neonatal retinal cells co-transplanted with myeloid iDCs showed higher survival rate compared to those transplanted without myeloid iDCs. (3) CD8 T-cells reactive against donor retinal cells were significantly increased in the mice with transplantation of retinal cells alone. These results suggested the beneficial effects of the use of myeloid iDCs in retinal cell transplantation therapy.  相似文献   

14.
Human NK cells contribute a significant role to host defense as well as xenogeneic cytotoxicity. Previous studies using human 721.221 cell line have shown that peptides derived from the leader sequence of the HLA-G binds and up-regulates the surface expression of HLA-E molecules, which was considered to consequently provide negative signals to human NK cells. However, the direct role of HLA-G in inhibiting human NK cells remains controversial. In this study, we showed that the expression of HLA-G or HLA-E in porcine endothelial cells directly protected sensitive porcine cells from human NK cell-mediated xenogeneic cytotoxicity. Ab blocking assays using F(ab')2 of the HLA class I-specific mAb PA2.6 indicated that the protection was directly mediated by the expression of HLA-G and HLA-E on the porcine cells. The HLA-E-mediated protection was blocked by anti-human CD94 Ab. In addition, the engagement of HLA-E lead to the phosphorylation of the CD94/NKG2 complex and the recruitment of SH2 domain-containing protein phosphatase 1 (SHP-1) to the complex. Therefore, HLA-E protected porcine cells from xenoreactive human NK cells through a CD94/NKG2-dependent pathway. In contrast, HLA-G inhibited human NK cells in the absence of CD94/NKG2 phosphorylation or SHP-1 recruitment, and the inhibition was not blocked by anti-CD94 Ab. Therefore, HLA-G protected porcine cells from human NK cells through a CD94/NKG2-independent pathway. These results demonstrated that both HLA-E and HLA-G could directly inhibit human NK cells in the absence of other endogenous HLA class I molecules. These results also have practical implications in preventing xenograft rejection mediated by human NK cells.  相似文献   

15.
Recognition of microbial components by TLR2 requires cooperation with other TLRs. TLR6 has been shown to be required for the recognition of diacylated lipoproteins and lipopeptides derived from mycoplasma and to activate the NF-kappaB signaling cascade in conjunction with TLR2. Human TLR2 is expressed on the cell surface in a variety of cells, including monocytes, neutrophils, and monocyte-derived, immature dendritic cells (iDCs), whereas the expression profile of TLR6 in human cells remains obscure. In this study we produced a function-blocking mAb against human TLR6 and analyzed TLR6 expression in human blood cells and cell lines and its participation in ligand recognition. TLR6 was expressed, although at a lower level than TLR2, on the cell surface in monocytes, monocyte-derived iDCs, and neutrophils, but not on B, T, or NK cells. Confocal microscopic analysis revealed that TLR6 was colocalized with TLR2 at the plasma membrane of monocytes. Importantly, TLR2/6 signaling did not require endosomal maturation, and anti-TLR6 mAb inhibited cytokine production in monocytes and iDCs stimulated with synthetic macrophage-activating lipopeptide-2 or peptidoglycan, indicating that TLR6 recognized diacylated lipopeptide and peptidoglycan at the cell surface. In addition, TLR2 mutants C30S and C36S (Cys(30) and Cys(36) in TLR2 were substituted with Ser), which were expressed intracellularly in HEK293 cells, failed to induce NF-kappaB activation upon macrophage-activating lipopeptide-2 stimulation even in the presence of TLR6. Thus, coexpression of TLR2 and TLR6 at the cell surface is crucial for recognition of diacylated lipopeptide and peptidoglycan and subsequent cellular activation in human cells.  相似文献   

16.
Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94+ NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94+ NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL+ CD56dim NK cells, in contrast to the efficient responses by CD56bright NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94+ KIR2DL- NK cells may be uniquely beneficial.  相似文献   

17.
The human nonclassical MHC class I molecule HLA-E has recently been shown to act as a major ligand for NK cell inhibitory receptors. Using HLA-E-expressing transgenic mice, we produced a cytotoxic T cell clone that specifically recognizes the HLA-E molecule. We report here that this T cell clone lyses HLA-E-transfected RMA-S target cells sensitized with synthetic class I signal sequence nonamers. Moreover, this T cell clone lyses human EBV-infected B lymphocytes, PHA blasts, and PBL, formally demonstrating the surface expression of HLA-E/class I signal-derived peptide complex on human cells. Furthermore, these data show that HLA-E complexed with class I signal sequence-derived peptides is not only a ligand for NK cell inhibitory receptors, but can also trigger cytotoxic T cells (CTL).  相似文献   

18.
A comparison of cross-linked and native gliadin suspensions, with respect to the state of protein globular structure was carried out using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and rheological analysis. Gliadin suspensions were also analyzed in the presence and absence of glycerol. DLS analysis showed that R(h) increased only with gliadin/EDC/NHS suspensions. However, Kratky plots revealed that gliadin and gliadin/l-cysteine maintained their globular shape even in absence or presence of glycerol. Rheological experiments revealed that gliadin and gliadin/l-cysteine suspension exhibited a similar profile with three main domains, and a sol-gel transition. Gliadin/EDC/NHS did not present any sol-gel transition, and this fact corroborates with DLS results and the hypothesis of lower protein-protein interaction, which are in agreement with G″>G'.  相似文献   

19.
BackgroundInfections with the Puumala orthohantavirus (PUUV) in humans may cause hemorrhagic fever with renal syndrome (HFRS), known as nephropathia epidemica (NE), which is associated with acute renal failure in severe cases. In response to PUUV-infections, a subset of potent antiviral NKG2C+ NK cells expand, whose role in virus defence and pathogenesis of NE is unclear. NKG2C+ NK cell proliferation is mediated by binding of NKG2C/CD94 to HLA-E on infected cells. The proliferation and activation of NKG2C+ NK cells via the NKG2C/HLA-E axis is affected by different NKG2C (NKG2Cwt/del) and HLA-E (HLA-E*0101/0103) alleles, which naturally occur in the human host. Homozygous (NKG2Cdel/del) and heterozygous (NKG2Cwt/del) deletions of the NKG2C receptor results in an impaired NKG2C/CD94 mediated proliferation and activation of NKG2C+ cells. We therefore analyzed the PUUV-mediated NKG2C+ NK cell responses and the impact of different NKG2C and HLA-E alleles in NE patients.Methodology/Principal findingsNKG2C+ NK cell expansion and effector functions in PUUV-infected cells were investigated using flow cytometry and it was shown that PUUV-infected endothelial cells led to a NKG2C/CD94 mediated NKG2C+ NK cell activation and expansion, dependent on the HLA-G-mediated upregulation of HLA-E. Furthermore, the NKG2Cdel and HLA-E*0101/0103 alleles were determined in 130 NE patients and 130 matched controls, and it was shown that in NE patients the NKG2Cwt/del allele was significantly overrepresented, compared to the NKG2Cwt/wt variant (p = 0.01). In addition, in vitro analysis revealed that NKG2Cwt/del NK cells exhibited on overall a lower proliferation (p = 0.002) and lower IFNγ expression (p = 0.004) than NKG2Cwt/wt NK cells.Conclusions/SignificanceOur results corroborate the substantial impact of the NKG2C/HLA-E axis on PUUV-specific NK cell responses. A weak NKG2C+ NK cell response, as reflected by NKG2Cwt/del variant, may be associated with a higher risk for a severe hantavirus infections.  相似文献   

20.

Background and Objectives

Damage to intestinal mucosa in celiac disease (CD) is mediated both by inflammation due to adaptive and innate immune responses, with IL-15 as a major mediator of the innate immune response, and by proliferation of crypt enterocytes as an early alteration of CD mucosa causing crypts hyperplasia. We have previously shown that gliadin peptide P31-43 induces proliferation of cell lines and celiac enterocytes by delaying degradation of the active epidermal growth factor receptor (EGFR) due to delayed maturation of endocytic vesicles. IL-15 is increased in the intestine of patients affected by CD and has pleiotropic activity that ultimately results in immunoregulatory cross-talk between cells belonging to the innate and adaptive branches of the immune response. Aims of this study were to investigate the role of P31-43 in the induction of cellular proliferation and innate immune activation.

Methods/Principal Findings

Cell proliferation was evaluated by bromodeoxyuridine (BrdU) incorporation both in CaCo-2 cells and in biopsies from active CD cases and controls. We used real-time PCR to evaluate IL-15 mRNA levels and FACS as well as ELISA and Western Blot (WB) analysis to measure protein levels and distribution in CaCo-2 cells.Gliadin and P31-43 induce a proliferation of both CaCo-2 cells and CD crypt enterocytes that is dependent on both EGFR and IL-15 activity. In CaCo-2 cells, P31-43 increased IL-15 levels on the cell surface by altering intracellular trafficking. The increased IL-15 protein was bound to IL15 receptor (IL-15R) alpha, did not require new protein synthesis and functioned as a growth factor.

Conclusion

In this study, we have shown that P31-43 induces both increase of the trans-presented IL-15/IL5R alpha complex on cell surfaces by altering the trafficking of the vesicular compartments as well as proliferation of crypt enterocytes with consequent remodelling of CD mucosa due to a cooperation of IL-15 and EGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号