首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes several economically important plant diseases, including citrus variegated chlorosis (CVC). X. fastidiosa is the first plant pathogen to have its genome completely sequenced. In addition, it is probably the least previously studied of any organism for which the complete genome sequence is available. Several pathogenicity-related genes have been identified in the X. fastidiosa genome by similarity with other bacterial genes involved in pathogenesis in plants, as well as in animals. The X. fastidiosa genome encodes different classes of proteins directly or indirectly involved in cell-cell interactions, degradation of plant cell walls, iron homeostasis, anti-oxidant responses, synthesis of toxins, and regulation of pathogenicity. Neither genes encoding members of the type III protein secretion system nor avirulence-like genes have been identified in X. fastidiosa.  相似文献   

2.
The high level expression of recombinant proteins in Escherichia coli often leads to the formation of inclusion bodies that contain most of the expressed protein held together by non-covalent forces. The inclusion bodies are usually solubilized using strong denaturing agents like urea and guanidium hydrochloride. In this study recombinant Omp28 (rOmp28) protein of Brucella melitensis was expressed in two different vector systems and further efficient purification of the protein was done by modification in buffers to improve the yield and purity. Different concentrations of Triton X-100 and β-mercaptoethanol were optimized for the solubilization of inclusion bodies. The lysis buffer with 8M urea alone was not sufficient to solubilize the inclusion bodies. It was found that the use of 1% Triton X-100 and 20mM β-mercaptoethanol in lysis and wash buffers used at different purification steps under denaturing conditions increased the yield of purified rOmp28 protein. The final yield of purified protein obtained with modified purification protocol under denaturing conditions was 151 and 90mg/l of the culture or 11.8 and 9.37mg/g of wet weight of cells in pQE30UA and pET28a(+) vector respectively. Thus modified purification protocol yielded more than threefold increase of protein in pQE30UA as compared with purification by conventional methods.  相似文献   

3.
4.
The protein composition of inclusion bodies produced in recombinant Escherichia coli overproducing Vitreoscilla hemoglobin (VHb) was analyzed by one-dimensional and two-dimensional electrophoresis techniques. Results indicate the presence of two types of cytoplasmic aggregates of differing morphology in single bacterial cells. These aggregates also differ in their relative content of VHb and pre-beta-lactamase and are separable by differential centrifugation. Results further suggest that the cytoplasmic protein elongation factor Tu is integrated into VHb inclusion bodies. The presence of the outer membrane proteins OmpA and OmpF in inclusion body preparations is attributed to cell envelope contamination rather than specific involvement in inclusion bodies. The specificity of in vivo protein aggregation is discussed.  相似文献   

5.
膜蛋白是一类与生物膜相互作用、具有重要功能和独特结构的蛋白质。异源表达纯化一直是了解膜蛋白结构和功能的重要瓶颈。结核分枝杆菌作为典型的胞内致病菌,其膜蛋白的研究具有很好的代表性以及重要意义。目前用于表达膜蛋白的有大肠杆菌、酵母、哺乳动物细胞等表达系统,但结核菌膜蛋白的表达宿主还往往局限于大肠杆菌。异源表达需要综合考虑蛋白的来源、疏水性、跨膜区等特性。低温、加入共表达因子以及改变培养条件有助于结核菌膜蛋白的可溶性表达。另外,包涵体复性也是获得结核菌目的膜蛋白的重要途径。随着新的表达系统,新的促可溶表达策略,新的包涵体复性手段,新的纯化方法的应用,将有更多的膜蛋白异源表达纯化成功,为蛋白质功能研究奠定基础。  相似文献   

6.
This paper describes the overproduction and purification of the C-terminus polyhistidine-tagged outer membrane protein OprM, which is a part of the MexA-MexB-OprM active efflux system of Pseudomonas aeruginosa. Renaturation of the protein from inclusion bodies of Escherichia coli was achieved using guanidine-HCl as denaturing agent and n-octylpolyoxyethylene (C8POE) and n-octyltetraoxyethylene (C8E4) as nonionic detergents. The refolded protein was purified by ion-exchange and nickel-affinity chromatography. The final yield was 6 mg of pure histidine-tagged OprM per liter of E. coli culture. Renaturation was monitored by the effects of heating prior to SDS-PAGE, using a typical and exclusive property of outer membrane proteins. Immunoblotting revealed that the recombinant protein is addressed to the outer membrane of E. coli, after maturation by excision of its N-terminal signal sequence. Complementation of an oprM deletion mutant with the plasmid encoded histidine-tagged OprM protein restored antibiotic susceptibilities to wild-type levels, demonstrating functionality of recombinant OprM.  相似文献   

7.
《Process Biochemistry》2010,45(11):1816-1820
In this study, we describe a process for protein expression and purification from plants and insect cells based on the accumulation of recombinant proteins in protein bodies. This technology is using Zera®, which sequence has the capacity to trigger in vivo the formation of dense, non-secretory storage protein body-like organelles derived from the endoplasmic reticulum (ER). With this method, recombinant human growth hormone (hGH) was expressed and purified from protein bodies accumulated in plants (Nicotiana benthamiana) and in insect cells (Spodoptera frugiperda). We found that recombinant Zera-hGH are stored in large quantity inside those proteins bodies and can be easily recovered during a one-step process from plant and insect cell biomass. After solubilization of recombinant protein bodies and cleavage of Zera tag from the fusion protein, active hGH was finally purified by a single chromatography step. These results indicate that recombinant proteins derived from Zera-fusion could provide both an efficient protein production system and eased purification downstream process.  相似文献   

8.
The protein Pal (peptidoglycan-associated lipoprotein) is anchored in the outer membrane (OM) of Gram-negative bacteria and interacts with Tol proteins. Tol–Pal proteins form two complexes: the first is composed of three inner membrane Tol proteins (TolA, TolQ and TolR); the second consists of the TolB and Pal proteins linked to the cell's OM. These complexes interact with one another forming a multiprotein membrane-spanning system. It has recently been demonstrated that Pal is essential for bacterial survival and pathogenesis, although its role in virulence has not been clearly defined. This review summarizes the available data concerning the structure and function of Pal and its role in pathogenesis.  相似文献   

9.
Biochemical analysis of membrane proteins is problematic at the level of solubilization and/or purification because of their hydrophobic nature. Here, we developed methods for efficient solubilization and purification of membrane proteins using L-arginine. The addition of 100 mM of basic amino acids (L-arginine, L-lysine, and L-ornithine) to a detergent-containing solubilization buffer enhanced solubilization (by 2.6-4.3 fold) of a model membrane protein-polygalacturonic acid synthase. Of all the amino acids, arginine was the most effective additive for solubilization of this membrane protein. Arginine addition also resulted in the best solubilization of other plant membrane proteins. Next, we examined the effects of arginine on purification of a model membrane protein. In anion-exchange chromatography, the addition of arginine to the loading and elution buffers resulted in a greater recovery of a membrane protein. In ultrafiltration, the addition of arginine to a protein solution significantly improved the recovery of a membrane protein. These results were thought to be due to the properties of arginine that prevent aggregation of hydrophobic proteins. Taken together, the results of our study showed that arginine is useful for solubilization and purification of aggregate-prone membrane proteins.  相似文献   

10.
Opacity-associated (Opa) proteins are outer membrane proteins which play a critical role in the adhesion of pathogenic Neisseria spp. to epithelial and endothelial cells and polymorphonuclear neutrophils. The adherence is mainly mediated by the CD66-epitope-containing members of the carcinoembryonic-antigen family of human cell-adhesion molecules (CEACAM). For the analysis of the specific interactions of individual Opa proteins with their receptors, pure protein is needed in its native conformation. In this study, we describe the isolation and structural analysis of opacity proteins OpaJ129 and OpaB128 derived from Neisseria meningitidis strain H44/76. When the Opa proteins were produced with the phoE signal sequence in Escherichia coli, they were localized at the cell surface and the recombinant bacteria were found to specifically interact with CEACAM1. For refolding and purification, the proteins were overproduced without their signal sequences in E. coli, resulting in its cytoplasmic accumulation in the form of inclusion bodies. After solubilization of the inclusion bodies in urea, the proteins could be folded efficiently in vitro, under alkaline conditions by dilution in ethanolamine and the detergent n-dodecyl-N,N-dimethyl-1-ammonio-3-propanesulfonate (SB12). The structure of the refolded and purified proteins, determined by circular dichroism, indicated a high content of beta-sheet conformation, which is consistent with previously proposed topology models for Opa proteins. A clear difference was found between the binding of refolded vs. denatured OpaJ protein to the N-A1 domain of CEACAM1. Almost no binding was found with the denatured Opa protein, showing that the Opa-receptor interaction is conformation-dependent.  相似文献   

11.
We recently reported a one-step affinity purification method using a silica-binding protein, designated Si-tag, as a fusion partner and silica particles as the specific adsorbents (Ikeda et al., Protein Expr. Purif. 71 [2010] 91-95) [13]. In this study, we demonstrate that the Si-tag also binds to the silica surface even under denaturing conditions, thereby facilitating affinity purification of recombinant proteins from inclusion bodies. A fusion protein of the Si-tag and a biotin acceptor peptide (AviTag), which was expressed as inclusion bodies in Escherichia coli, was used as a model protein. To simplify our purification method, we disrupted recombinant E. coli cells by sonication in the presence of 8M urea with concomitant solubilization of the inclusion bodies. The fusion protein was recovered with a purity of 90 ± 3% and yield of 92 ± 6% from the cleared cell lysate. We also discuss the binding mechanism of the Si-tag to a silica surface in the presence of high concentrations of denaturant. We propose that the intrinsic disorder of the polycationic Si-tag polypeptide plays an important role in its binding to the silica surface under denaturing conditions.  相似文献   

12.
The recovery of active proteins from inclusion bodies usually involves chaotrope-induced denaturation, followed by refolding of the unfolded protein. The efficiency of renaturation is low, leading to reduced yield of the final product. In this work, we report that recombinant proteins can be overexpressed in the soluble form in the host expression system by incorporating compatible solutes during protein expression. Green fluorescent protein (GFP), which was otherwise expressed as inclusion bodies, could be made to partition off into the soluble fraction when sorbitol and arginine, but not ethylene glycol, were present in the growth medium. Arginine and sorbitol increased the production of soluble protein, while ethylene glycol did not. Production of ATP increased in the presence of sorbitol and arginine, but not ethylene glycol. A control experiment with fructose addition indicated that protein solubilization was not due to a simple ATP increase. We have successfully reproduced these results with the N-terminal domain of HypF (HypF-N), a bacterial protein which forms inclusion bodies in Escherichia coli. Instead of forming inclusion bodies, HypF-N could be expressed as a soluble protein in the presence of sorbitol, arginine, and trehalose in the expression medium.  相似文献   

13.
High levels of recombinant protein expression can lead to the formation of insoluble inclusion bodies. These complex aggregates are commonly solubilized in strong denaturants, such as 6–8 M urea, although, if possible, solubilization under milder conditions could facilitate subsequent refolding and purification of bioactive proteins. Commercially available GST-tag assays are designed for quantitative measurement of GST activity under native conditions. GST fusion proteins accumulated in inclusion bodies are considered to be undetectable by such assays. In this work, solubilization of recombinantly produced proteins was performed in 4 M urea. The activity of rGST was assayed in 2 M urea and it was shown that rGST preserves 85% of its activity under such denaturing conditions. A colorimetric GST activity assay with 1-chloro-2, 4-dinitrobenzene (CDNB) was examined for use in rapid detection of expression targeted to inclusion bodies and for the identification of inclusion body proteins which can be solubilized in low concentrations of chaotropic agents. Applicability of the assay was evaluated by tracking protein expression of two GST-fused allergens of biopharmaceutical value in E. coli, GST-Der p 2 and GST-Mus a 5, both targeted to inclusion bodies.  相似文献   

14.
This paper describes methods to produce an isotopically labeled 23 kDa viral membrane protein with purified yield of 20 mg/L of Escherichia coli shake flask culture. This yield is sufficient for NMR structural studies and the protein production methods are simple, straightforward, and rapid and likely applicable to other recombinant membrane proteins expressed in E. coli. The target FHA2 protein is the full ectodomain construct of the influenza virus hemagglutinin protein which catalyzes fusion between the viral and the cellular endosomal membranes during infection. The high yield of FHA2 was achieved by: (1) initial growth in rich medium to A600  8 followed by a switch to minimal medium and induction of protein expression; and (2) obtaining protein both from purification of the detergent-soluble lysate and from solubilization, purification, and refolding of inclusion bodies. The high cell density was achieved after optimization of pH, oxygenation, and carbon source and concentration, and the refolding protocol was optimized using circular dichroism spectroscopy. For a single residue of membrane-associated FHA2 that was obtained from purification and refolding of inclusion bodies, native conformation was verified by the 13CO chemical shifts measured using solid-state nuclear magnetic resonance spectroscopy.  相似文献   

15.
The recent spread of the plant pathogenic bacterium Xylclla fastidiosa Wells et al. by an invasive vector species, Homalodisca coagulata Say, in southern California has resulted in new epidemics of Pierce's disease of grapevine. Our goal is to develop an efficient method to detect low titers of X. fastidiosa in H. coagulata that is amenable to large sample sizes for epidemiological studies. Detection of the plant pathogenic bacterium X. fastidiosa in its insect vector is complicated by low titers of bacteria, difficulty in releasing it from the insect mouthparts and foregut, and the presence of substances in the insect that inhibit polymerase chain reaction (PCr). To select the optimal protocol for DNA extraction to be used with PCR, we compared three standard methods and 11 commercially available kits for relative efficiency of X. fastidiosa DNA extraction in the presence of insect tissue. All of the protocols tested were proficient at extracting DNA from pure bacterial culture (1 x 10(5) cells), and all but one protocol successfully extracted sufficient bacterial DNA in the presence of insect tissue. Three DNA extraction techniques, immunomagnetic separation, the DNeasy Tissue kit (Qiagen, Hercules, CA), and Genomic DNA Purification kit (Fermentus, Hanover, MD), were compared more closely using a dilution series of X. fastidiosa (5000-0 cells) with and without insect tissue present. The DNeasy Tissue kit was the best kit tested, allowing detection of 5 x 10(3) X. fastidiosa cells with an insect head background.  相似文献   

16.
The Tol-Pal system of gram-negative bacteria is composed of five proteins. TolA, TolQ, and TolR are inner membrane proteins, TolB is a periplasmic protein, and Pal, the peptidoglycan-associated lipoprotein, is anchored to the outer membrane. In this study, the roles of Pal and major lipoprotein Lpp were compared in Escherichia coli. lpp and tol-pal mutations have previously been found to perturb the outer membrane permeability barrier and to cause the release of periplasmic proteins and the formation of outer membrane vesicles. In this study, we showed that the overproduction of Pal is able to restore the outer membrane integrity of an lpp strain but that overproduced Lpp has no effect in a pal strain. Together with the previously reported observation that overproduced TolA complements an lpp but not a pal strain, these results indicate that the cell envelope integrity is efficiently stabilized by an epistatic Tol-Pal system linking inner and outer membranes. The density of Pal was measured and found to be lower than that of Lpp. However, Pal was present in larger amounts compared to TolA and TolR proteins. The oligomeric state of Pal was determined and a new interaction between Pal and Lpp was demonstrated.  相似文献   

17.
Mycoplasma hyopneumoniae, the etiological agent of swine enzootic pneumonia, is an important pathogen in the swine industry worldwide. Vaccination is the most cost-effective strategy for controlling and prevention of this disease. However, investigations on pathogenicity mechanisms as well as current serological detection methods and the development of new recombinant subunit vaccines are hampered by the lack of known and well characterized species-specific M. hyopneumoniae antigens. In this work, 54 predicted genes encoding proteins with potential to be used as subunit vaccine or antigens in diagnostic tests were selected, amplified by PCR and cloned into Escherichia coli expression vectors. Recombinant protein expression, solubility and yields were analyzed. The majority of the recombinant proteins were expressed in inclusion bodies. After solubilization with urea or N-lauroyl sarcosine, recombinant proteins were purified by Ni2+ affinity chromatography. This approach allowed purification of thirty recombinant M. hyopneumoniae proteins which will be evaluated as vaccine candidates and/or as antigens to be used in diagnostic tests.  相似文献   

18.
The production of sufficient amounts of chemically and conformationally homogenous protein is a major requirement for successful crystallization and structure determination. With membrane proteins, this constitutes a particular problem because the membrane volume is limited and the organisms are usually very sensitive to changes in membrane properties brought about by massive protein insertion. Moreover, the extraction of membrane proteins from the membrane with detergents is generally a harsh treatment, which gives rise to conformational aberrations. A number of successful procedures for functional expression followed by purification are reviewed here together with nonfunctional expression into inclusion bodies and subsequent (re)folding to produce functional proteins. Most of the data are for prokaryotic outer membrane proteins, but the outer membrane proteins of eukaryotic organelles are also considered as they do show similar features.  相似文献   

19.
The production of sufficient amounts of chemically and conformationally homogenous protein is a major requirement for successful crystallization and structure determination. With membrane proteins, this constitutes a particular problem because the membrane volume is limited and the organisms are usually very sensitive to changes in membrane properties brought about by massive protein insertion. Moreover, the extraction of membrane proteins from the membrane with detergents is generally a harsh treatment, which gives rise to conformational aberrations. A number of successful procedures for functional expression followed by purification are reviewed here together with nonfunctional expression into inclusion bodies and subsequent (re)folding to produce functional proteins. Most of the data are for prokaryotic outer membrane proteins, but the outer membrane proteins of eukaryotic organelles are also considered as they do show similar features.  相似文献   

20.
Snake venoms contain a complex mixture of many biological molecules including proteins. The purification of recombinant proteins is a key step in studying their function and structure with affinity chromatography as the common method used in their purification. In bacterial expression systems, hydrophobic recombinant proteins are usually precipitated into inclusion bodies, and contaminants are typically associated with tagged proteins after purification. The purpose of this study was to develop a procedure to purify hydrophobic recombinant proteins without an affinity tag. Snake venom mature C-type lectin-like proteins (CLPs) with a tag were cloned, expressed, and purified by repeated sonication and wash steps. The effects of the signal peptide on the expression and solubility of the recombinant protein were investigated. The CLPs in washed inclusion bodies were solubilized and refolded by dialysis. The CLPs without a tag were successfully purified with a yield 38 times higher than the traditional method, and inhibited blood platelet aggregation with an IC(50) of 100.57μM in whole blood. This novel procedure is a rapid, and inexpensive method to purify functional recombinant hydrophobic CLPs from snake venoms useful in the development of drug therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号