首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review focusses on two questions: (1) How can the intracellular toxicity of ions such as Ca2+ or Zn2+ be reconciled with their extracellular benefit? (2) Why is the dietary requirement for Zn2+ so high when its documented biological role is that of a tightly-bound prosthetic group of certain enzymes? An answer to both questions is provided by the observation that extracellular cations such as Ca2+ and Zn2+ protect the plasma membrane of cells against non-specific leakage, including an influx of Ca2+ or Zn2+. It is suggested that such protection, against leakage induced by microbial and other toxins, may contribute to the high dietary requirement for zinc. These arguments lead to the proposal that a previously unrecognized form of host defence is one of protection of the cell plasma membrane by divalent cations against damage induced by cytotoxic agents of environmental origin.  相似文献   

2.
Cai Q  Zhu Z  Li H  Fan X  Jia N  Bai Z  Song L  Li X  Liu J 《Life sciences》2007,80(7):681-689
Prenatal stress is known to cause neuronal loss and oxidative damage in the hippocampus of offspring rats. To further understand the mechanisms, the present study was undertaken to investigate the effects of prenatal stress on the kinetic properties of high-voltage-activated (HVA) Ca(2+) and K(+) channels in freshly isolated hippocampal CA3 pyramidal neurons of offspring rats. Pregnant rats in the prenatal stress group were exposed to restraint stress on days 14-20 of pregnancy three times daily for 45 min. The patch clamp technique was employed to record HVA Ca(2+) and K(+) channel currents. Prenatal stress significantly increased HVA Ca(2+) channel disturbance including the maximal average HVA calcium peak current amplitude (-576.52+/-7.03 pA in control group and -702.05+/-6.82 pA in prenatal stress group, p<0.01), the maximal average HVA Ca(2+) current density (-40.89+/-0.31 pA/pF in control group and -49.44+/-0.37 pA/pF in prenatal stress group, p<0.01), and the maximal average integral current of the HVA Ca(2+) channel (106.81+/-4.20 nA ms in control group and 133.49+/-4.59 nA ms in prenatal stress group, p<0.01). The current-voltage relationship and conductance--voltage relationship of HVA Ca(2+) channels and potassium channels in offspring CA3 neurons were not affected by prenatal stress. These data suggest that exposure of animals to stressful experience during pregnancy can exert effects on calcium ion channels of offspring hippocampal neurons and that the calcium channel disturbance may play a role in prenatal stress-induced neuronal loss and oxidative damage in offspring brain.  相似文献   

3.
A Zn2+-glycerophosphocholine cholinephosphodiesterase was purified with a specific activity of 4.6 μmole/min·mg protein from bovine brain membranes by procedures involving PI-PLC solubilization, concanavalin A affinity chromatography, CM-sephadex chromatography and Sephadex G-150 chromatography. Based on molecular weight determination gel chromatography and SDS polyacrylamide gel electrophoresis, the phosphodiesterase activity appears to be a dimeric protein (110 kDa) composed of two subunits with a molecular weight of approximately 54 kDa. The Km value for p-nitrophenylphosphocholine and the optimum pH were found to be 16 μM and pH 10.5, respectively. The phosphodiesterase was inhibited by Cu2+, but not the other divalent metal ions. The activity of the apoenzyme was remarkably activated by Co2+ or Zn2+, but not Mn2+ or Mg2+. In addition, the inactivation of the enzyme in glycine buffer was prevented by Mn2+ or Zn2+, but not Co2+ or Mg2. In a separate experiment, comparing properties of the purified and membrane-bound phosphodiesterases, the forms of two enzymes were quite similar except in stability. Both enzymes were more stable at pH 7.4 than pH 5 or 10. However, the membrane-bound enzyme was more stable than the soluble enzyme at all three pHs. These data suggest that the activity of the phosphodiesterase may be stabilized in-vivo.  相似文献   

4.
Metabolically-active mycelia of Penicillium sp. PT1 took up Zn2+ in a biphasic mode, involving an initial energy-dependent binding of Zn2+ to the cell surface, followed by a slower intracellular accumulation. The independent binding probably involved a simple ion exchange, as indicated by the pH decrease during the initial adsorption from 4.55 to 3.28. Intracellular accumulation probably involved polyphosphate precipitation as suggested by transmission electron microscopy  相似文献   

5.
{2-Deoxy-3-O-[2-cyanoethoxy(diisopropylamino)phosphino]-5-O-(4,4′-dimethoxytrityl)-α-D- erythro-pentofuranosyl}-N-{2-[4,7,10-tris(2,2,2-trifluoroacetyl)-1,4,7,10-tetraazacyclododecan-1- yl]ethyl}acetamide (1) was prepared and incorporated into a 2′-O-methyl oligoribonucleotide. The hybridization of this oligonucleotide with complementary 2′-O-methyl oligoribonucleotides incorporating one to five uracil bases opposite to the azacrown structure was studied in the absence and presence of Zn2+. Introduction of Zn2+ moderately stabilized the duplex with U-bulged targets.  相似文献   

6.
Channels and transporters play essential biological roles primarily through the transportation of ions and small molecules that are required to maintain cellular activities across the biomembrane. Secondary to transportation, channels and transporters also integrate and coordinate biological functions at different levels, ranging from the subcellular (nm) to multicellular (μm) scales. This is underpinned by efficient functional coupling within molecular assemblies of channels, transporters, proteins, small molecules, and lipids.  相似文献   

7.
Summary 1. Whole-cell patch clamp experiments were performed on rat dorsal root ganglion (DRG) neurons to investigate the actions of various combinations of Pb2+, Zn2+, and Al3+ on voltage-activated calcium channel currents (VACCCs).2. Each of these metals has been shown to reduce VACCCs.3. We investigated the effects of simultaneous application of two cations in the range of their IC50 values. For all possible combinations (Pb2+/Zu2+, Zn2+/Al3+, Al3+/Pb2+), independent of the order of application, we found additive actions on VACCCs.4. We observed a 75% (±9%) block of the control current when two cations were applied simultaneously. This observation is consistent with both, an action of two metals at the same site as well as independent actions at different locations of the ion channel.5. The additivity of the effects should be taken into account for questions of public health and the assessment of threshold limits in cases of environmental contamination.  相似文献   

8.
9.
Shi Y  Hu H  Ma R  Cong W  Cai Z 《Biotechnology letters》2004,26(9):747-751
The maximum growth rate (1.4-2 x 10(5) cells ml(-1) d(-1)), cell final yields (2.6-5.2 x 10(5) cells ml(-1)) and extracellular alkaline phosphatase activity (2.4-10.6 microg phosphate released ml(-1) h(-1)) of the red tide alga, Skeletonema costatum, increased when Zn2+ was increased from 0 to 24 pM, but decreased with 66 pM Zn2+ in growth medium with glycerophosphate as the sole phosphorus source. Extracellular carbonic anhydrase activity and the affinity for HCO3- and CO2 uptake increased when Zn2+ was increased from 0 to 12 pM, but then decreased at higher concentrations. The results suggested that utilization of organic phosphate required more Zn2+ than the uptake of inorganic carbon did, while utilization of dissolved inorganic carbon by Skeletonema costatum was very sensitive to Zn2+ concentration variations.  相似文献   

10.
Nonhistone nuclear proteins were isolated from 3–5 day old neonatal as well as 3 month-old adult myocardium. The nuclear proteins were separated and analyzed by two-dimensional polyacrylamide gel electrophoresis. Using a blot transfer technique equilibrated with65Zn2+, at least four polypeptides exhibited Zn2+-binding activity over the spectrum of nonhistone nuclear proteins. A protein with a molecular weight of 68kDa pI7.8, which has been characterized for its involvement in nucleosome structure, consistently binds Zn2+ in both the neonatal and adult myocardium. This nuclear protein has now been further characterized by partial amino acid microsequencing. It was found that this novel polypeptide is distinct from the pore-complex lamina proteins. Three other polypeptides with M90kDa, pI7.8, M68kDa, pI6.5 and M35 kDa, pI7.5 exhibited increased Zn2+-binding activity in neonatal myocardium as compared to adult myocardium. Together with results from our previous studies, this study provides the first evidence implicating Zn++-binding nuclear proteins in the processes of growth and differentiation of myocardial development. (Mol Cell Biochem121: 175–179, 1993)  相似文献   

11.
12.
Ca(2+) signaling is the astrocyte form of excitability and the endoplasmic reticulum (ER) plays an important role as an intracellular Ca(2+) store. Since the subcellular distribution of the ER influences Ca(2+) signaling, we compared the arrangement of ER in astrocytes of hippocampus tissue and astrocytes in cell culture by electron microscopy. While the ER was usually located in close apposition to the plasma membrane in astrocytes in situ, the ER in cultured astrocytes was close to the nuclear membrane. Activation of metabotropic receptors linked to release of Ca(2+) from ER stores triggered distinct responses in cultured and in situ astrocytes. In culture, Ca(2+) signals were commonly first recorded close to the nucleus and with a delay at peripheral regions of the cells. Store-operated Ca(2+) entry (SOC) as a route to refill the Ca(2+) stores could be easily identified in cultured astrocytes as the Zn(2+)-sensitive component of the Ca(2+) signal. In contrast, such a Zn(2+)-sensitive component was not recorded in astrocytes from hippocampal slices despite of evidence for SOC. Our data indicate that both, astrocytes in situ and in vitro express SOC necessary to refill stores, but that a SOC-related signal is not recorded in the cytoplasm of astrocytes in situ since the stores are close to the plasma membrane and the refill does not affect cytoplasmic Ca(2+) levels.  相似文献   

13.
Summary The purpose of this study was to examine the effect of three classes of Ca2+ antagonists, diltiazem, verapamil and nifedipine on Na+-Ca2+ exchange mechanism in the sarcolemmal vesicles isolated from canine heart. Na+-Ca2+ exchange and Ca2+ pump (ATP-dependent Ca2+ uptake) activities were assessed using the Millipore filtration technique. sarcolemmal vesicles used in this study are estimated to consist of several subpopulations wherein 23% are inside-out and 55% are right side-out sealed vesicles in orientation. The affect of each Ca2+ antagonist on the Na+-dependent Ca2+ uptake was studied in the total population of sarcolemmal vesicles, in which none of the agents depressed the initial rate of Ca2+ uptake until concentrations of 10 M were incubated in the incubation medium. However, when sarcolemmal vesicles were preloaded with Ca2+ via ATP-dependent Ca2+ uptake, cellular Ca2+ influx was depressed only by verapamil (28%) at 1 M in the efflux medium with 8 mM Na+. Furthermore, inhibition of Ca2+ efflux by verapamil was more pronounced in the presence of 16 mM Na+ in the efflux medium. The order of inhibition was; verapamil > diltiazem > nifedipine. These results indicate that same forms of Ca2+-antagonist drugs may affect the Na+-Ca2+ exchange mechanism in the cardiac sarcolemmal vesicles and therefore we suggest this site of action may contribute to their effects on the myocardium.  相似文献   

14.
Depolarization-evoked increases in intraterminal free Ca2+ are required for the induction of neurotransmitter release from nerve terminals. Although the mechanisms that regulate the voltage-induced accumulation of presynaptic Ca2+ remain obscure, there is evidence that the phospholipase-dependent accumulation of arachidonic acid, or its metabolites, may be involved. Therefore, fura-2 loaded hippocampal mossy fiber nerve endings were used to investigate the relationships between membrane depolarization, lipid metabolism and presynaptic Ca2+ availability. It was observed that depolarization of the nerve terminals with KCl induced an increase in intraterminal free calcium that was inhibited more than 90% by a combination of voltage-sensitive Ca2+ channel blockers. In addition, the K+-dependent effects on Ca2+ concentrations were attenuated in the presence of phospholipase A2 inhibitors, but were mimicked by the phospholipase A2 activator melittin and exogenous arachidonic acid. Both the melittin- and arachidonic acid-induced increases in presynaptic Ca2+ were reduced by voltage-sensitive Ca2+ channel blockers. The stimulatory effects of arachidonic acid appeared to be independent of its further metabolism to prostaglandins. In fact, inhibition of either cyclooxygenase or lipoxygenase pathways resulted in a potentiation of the depolarization-evoked increase in intraterminal free Ca2+. From these results, we propose that some portion of the depolarization-evoked increase in intraterminal free calcium depends on the activation of phospholipase A2 and the subsequent accumulation of unesterified arachidonic acid.  相似文献   

15.
We examined the rapid effects of corticosterone (CORT) on N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ signals in adult mouse hippocampal slices by using Ca2+ imaging technique. Application of NMDA caused a transient elevation of intracellular Ca2+ concentration followed by a decay to a plateau within 150s. The 30min preincubation of CORT induced a significant decrease of the peak amplitude of NMDA-induced Ca2+ elevation in the CA1 region. The rapid effect of CORT was induced at a stress-induced level (0.4-10microM). Because the membrane non-permeable bovine serum albumin-conjugated CORT also induced a similar rapid effect, the rapid effect of CORT might be induced via putative surface CORT receptors. In contrast, CORT induced no significant effects on NMDA-induced Ca2+ elevation in the dentate gyrus. In the CA3 region, CORT effects were not evaluated, because the marked elevation of NMDA-induced Ca2+ signals was not observed there.  相似文献   

16.
The expression of hepatic Ca2+-binding protein regucalcin in the cloned rat hepatoma cells (H4-II-E) was investigated. The change in regucalcin mRNA levels was analyzed by Northern blotting using rat liver regucalcin complementary DNA (0.9 kb of open reading frame). Regucalcin mRNA was expressed in H4-II-E hepatoma cells. This expression was clearly stimulated in the presence of serum (10% fetal bovine serum). Bay K 8644 (2. 5 × 10-6 M), a Ca2+ channel agonist, significantly stimulated regucalcin mRNA expression in the absence or presence of 10% serum. Dibutyryl cyclic AMP (10-3 M) did not have a stimulatory effect on the regucalcin mRNA expression. The presence of phorbol 12-myristate 13-acetate (PMA; 10-6 M) or estrogen (10-8 M) caused a significant increase in regucalcin mRNA levels in the hepatoma cells cultured in serum-free medium, while insulin (5 × 10-9 M) or dexamethasone (10-6 M) had no effect. Bay K 8644-stimulated regucalcin mRNA expression in the hepatoma cells was completely blocked in the presence of trifluoperazine (10-5 M), an antagonist of calmodulin, or staurosporine (10-7 M), an inhibitor of protein kinase C. The stimulatory effect of PMA was clearly inhibited in the presence of stauroporine. The present study demonstrates that regucalcin mRNA is expressed in the transformed H4-II-E hepatoma cells, and that the expression is stimulated through Ca2+-dependent signaling factors.  相似文献   

17.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

18.
19.
Respiring rat liver mitochondria are known to spontaneously release the Ca2+ taken up when they have accumulated Ca2+ over a certain threshold, while Sr2+ and Mn2+ are well tolerated and retained. We have studied the interaction of Sr2+ with Ca2+ release. When Sr2+ was added to respiring mitochondria simultaneously with or soon after the addition of Ca2+, the release was potently inhibited or reversed. On the other hand, when Sr2+ was added before Ca2+, the release was stimulated. Ca2+-induced mitochondrial damage and release of accumulated Ca2+ is generally believed to be due to activation of mitochondrial phospholipase A (EC 3.1.1.4.) by Ca2+. However, isolated mitochondrial phospholipase A activity was little if at all inhibited by Sr2+. The Ca2+ -release may thus be triggered by some Ca2+ -dependent function other than phospholipase.  相似文献   

20.
Summary 1. We examined the actions of mercury (Hg2+) and zinc (Zn2+) on voltage-activated calcium channel currents of cultured rat dorsal root ganglion (DRG) neurons, using the whole-cell patch clamp technique.2. Micromolar concentrations of both cations reduced voltage-activated calcium channel currents. Calcium channel currents elicited by voltage jumps from a holding potential of –80 to 0 mV (mainly L- and N-currents) were reduced by Hg2+ and Zn2+. The threshold concentration for Hg2+ effects was 0.1 µM and that for Zn2+ was 10µM. Voltage-activated calcium channel currents were abolished (>80%) with 5µM Hg2+ or 200µM Zn2+. The peak calcium current was reduced to 50% (IC50) by 1.1µM Hg2+ or 69µM Zn2+. While Zn2+ was much more effective in reducing the T-type calcium channel current—activated by jumping from –80 to –35 mV—Hg2+ showed some increased effectiveness in reducing this current.3. The effects of both cations occurred rapidly and a steady state was reached within 1–3 min. While the action of Zn2+ was not dependent on an open channel state, Hg2+ effects depended partially on channel activation.4. While both metal cations reduced the calcium channel currents over the whole voltage range, some charge screening effects were detected with Hg2+ and with higher concentrations (>100µM) of Zn2+.5. As Zn2+ in the concentration range used had no influence on resting membrane currents, Hg2+ caused a clear inward current at concentrations µM.6. In the present study we discuss whether the actions of both metals on voltage-activated calcium channel currents are mediated through the same binding site and how they may be related to their neurotoxic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号