首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-Hydroxybutyrate, one of the main blood ketone bodies, has been considered as a critical indicator for diagnosis of diabetic ketoacidosis. Biosensors designed for detection of 3-hydroxybutyrate with advantages of precision, easiness and speedy performance have attracted increasing attention. This study attempted to develop a 3-hydroxybutyrate dehydrogenase-based biosensor in which single-walled carbon nanotubes (SWCNT) was used in order to immobilize the cofactor, NAD+, on the surface of screen-printed electrode. The formation of NAD+–SWCNT conjugates was assessed by electrochemistry and electron microscopy. Cyclic voltammetry was used to analyze the performance of this biosensor electrochemically. The considerable shelf life and reliability of the proposed biosensor to analyze real sample was confirmed by this method. The reduction in the over potential of electrochemical oxidation of NADH to ?0.15 V can be mentioned as a prominent feature of this biosensor. This biosensor can detect 3-hydroxybutyrate in the linear range of 0.01–0.1 mM with the low detection limit of 0.009 mM. Simultaneous application of screen-printed electrode and SWCNT has made the biosensor distinguished which can open new prospects for detection of other clinically significant metabolites.  相似文献   

2.
This paper demonstrated the selective determination of folic acid (FA) in the presence of important physiological interferents, ascorbic acid (AA) and uric acid (UA) at physiological pH using electropolymerized film of 5-amino-2-mercapto-1,3,4-thiadiazole (p-AMT) modified glassy carbon (GC) electrode. Bare GC electrode fails to determine the concentration of FA in the presence of AA and UA due to the surface fouling caused by the oxidized products of AA and FA. However, the p-AMT film modified electrode not only separates the voltammetric signals of AA, UA and FA with potential differences of 170 and 410 mV between AA–UA and UA–FA, respectively but also shows higher oxidation current for these analytes. The p-AMT film modified electrode displays an excellent selectivity towards the determination of FA even in the presence of 200-fold AA and 100-fold UA. Using amperometric method, we achieved the lowest detection of 75 nM UA and 100 nM each AA and FA. The amperometric current response was increased linearly with increasing FA concentration in the range of 1.0 × 10−7–8.0 × 10−4 M and the detection limit was found to be 2.3 × 10−10 M (S/N = 3). The practical application of the present modified electrode was successfully demonstrated by determining the concentration of FA in human blood serum samples.  相似文献   

3.
Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.  相似文献   

4.
A signal amplificatory electrochemical immunoassay with biotin-streptavidin conjunction and multienzymatic-based substrate recycling was developed in this work. Biotinylated secondary antibody (bio-IgG) was preliminarily assembled onto the immunosensor interface based on the sandwich format. Streptavidin was then loaded based on biotin-streptavidin conjunction. Owing to four identical binding sites of streptavidin to biotin, amounts of biotinylated alkaline phosphatase (bio-AP) were attached, and this improved the catalytic performance of the proposed immunosensor. Under the enzyme catalysis of AP, the electroinactive p-aminophenylphosphate (PAPP) substrate was rapidly hydrolyzed into the electroactive p-aminophenol (PAP) product, which next oxidized at the electrode surface into p-quinoneimine (PQI). In the presence of diaphorase (DI), PQI was reduced back to PAP, leading to a reversible cycle of PAP. Then the oxidized state of DI was regenerated into its reduced native state by its natural substrate, nicotinamide adenine dinucleotide (NADH). With the several amplification factors mentioned above, a wider linear ranged from 10−14 to 10−5 g ml−1 was acquired with a relatively low detection limit of 3.5 × 10−5 g ml−1 for human IgG. In addition, the nonspecific adsorption of proposed immunosensor was also investigated here.  相似文献   

5.
Glutathione (GSH) and glutathione disulfide (GSSG) are important thiols, which provide defence against oxidative stress by scavenging free radicals or causing the reduction of hydrogen peroxide. The ratio GSH/GSSG is often used as a sensitive index of oxidative stress in vivo. In this paper, a direct electrochemical method using an electrode modified with functionalized carbon nanotubes as electrochemical detector (ED) for liquid chromatography (LC) was described. The electrochemical behaviors of GSH and GSSG on this modified electrode were investigated by cyclic voltammetry and it was found that the functionalized carbon nanotubes exhibited efficiently electrocatalysis on the current responses of GSH and GSSG. In LC-ED, both of the analytes showed good and stable current responses. The detection limit of GSH was 0.2 pmol on column and that of GSSG was 1.2 pmol on column, which were low enough for the analysis of real small samples. The method was sensitive enough to detect difference in concentration of GSH and GSSG in hepatocytes from animals with and without introduction of oxidation stress by glucose or hydrogenperoxide.  相似文献   

6.
A sensitive electrochemical DNA detection method for the diagnosis of sexually transmitted disease (STD) caused by Chlamydia trachomatis was developed. The method utilizes a DNA-intercalating agent and a peroxidase promoted enzymatic precipitation reaction and involves the following steps. After hybridization of the target C. trachomatis gene with an immobilized DNA capture probe on a gold electrode surface, the biotin-tagged DNA intercalator (anthraquinone) was inserted into the resulting DNA duplex. Subsequently, the polymeric streptavidin/peroxidase complex was applied to the biotin-decorated electrode. Peroxidase catalyzed 4-chloronaphthol to produce insoluble product, which is precipitated on the electrode surface in the presence of hydrogen peroxide. Cyclic voltammograms with the gold electrode exhibited a peak current of ferrocenemethanol in electrolyte, which decreased in a proportional way to increasing concentration of target DNA owing to insulation of electrode surface by the growing insoluble precipitate. Using this strategy, we were able to detect picomolar concentrations of C. trachomatis gene in a sample taken from a real patient.  相似文献   

7.
In this paper, dendritic gold nanostructure (DenAu) modified electrode was obtained by direct electrodeposition of planar electrode into 2.8 mM HAuCl(4) and 0.1 M H(2)SO(4) solution under a very negative potential of -1.5 V. Scanning electron microscopy was used to characterize the growth evolution of DenAu with time. The whole DNA biosensor fabrication process based on the DenAu modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy methods with the use of ferricyanide as an electrochemical redox indicator. The probe DNA immobilization and hybridization with target DNA on the modified electrode could be well distinguished by using methylene blue as an electrochemical hybridization indicator. The DenAu modified electrode could realize an ultra sensitivity of 1 fM toward complementary target DNA and a very wide dynamic detection range (from 1 fM to 1 nM).  相似文献   

8.
Li H  Wei Q  He J  Li T  Zhao Y  Cai Y  Du B  Qian Z  Yang M 《Biosensors & bioelectronics》2011,26(8):3590-3595
Ultrasensitive sandwich type electrochemical immunosensors for the detection of cancer biomarker prostate specific antigen (PSA) is described which uses graphene sheet (GS) sensor platform and ferrocene functionalized iron oxide (Fe(3)O(4)) as label. To fabricate the labels, dopamine (DA) was first anchored onto Fe(3)O(4) surface followed by conjugating ferrocene monocarboxylic acid (FC) and secondary-antibody (Ab(2)) onto Fe(3)O(4) through the amino groups of DA (DA-Fe(3)O(4)-FC-Ab(2)). The great amount of DA molecules anchored onto Fe(3)O(4) surface increased the immobilization of FC and Ab(2) onto the Fe(3)O(4) nanoparticle, which in turn increased the sensitivity of the immunosensor. GS used as biosensor platform increased the surface area to capture a great amount of primary antibodies (Ab(1)) and the good conductivity of GS enhanced the detection sensitivity to FC. Using the redox current of FC as signal, the immunosensor displays high sensitivity, wide linear range (0.01-40 ng/mL), low detection limit (2 pg/mL), good reproducibility and stability. In addition, this method could be extended to the immobilization of other interesting materials (fluorescence dyes) onto Fe(3)O(4) for preparing various kinds of labels to meet the different requirements in immunoassays.  相似文献   

9.
The fabrication and application of a novel electrochemical detection (ED) method with the functionalized multi-wall carbon nanotubes (MWNTs) chemically modified electrode (CME) for liquid chromatography (LC) were described. The electrochemical behaviors of dopamine (DA) and other monoamine neurotransmitters at the CME were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicated that the CME exhibited efficient electrocatalytic effects on the current responses of monoamine neurotransmitters and their metabolites with high sensitivity, high stability and long-life activity. In LC-ED, DA, norepinephrine (NE), 3-methoxy-4-hydroxyphenylglycol (MHPG), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) had good and stable current responses at the CME. The linear ranges of seven analytes were over four orders of magnitude and the detection limits were 2.5 x 10(-10) mol/l for DA, 2.5 x 10(-10) mol/l for NE, 5.0 x 10(-10) mol/l for MHPG, 3.0 x 10(-10) mol/l for DOPAC, 3.5 x 10(-10) mol/l for 5-HT, 6.0 x 10(-10) mol/l for 5-HIAA, 1.25 x 10(-9) mol/l for HVA. The application of this method coupled with microdialysis sampling for the determination of monoamine neurotransmitters and their metabolites in Parkinsonian patients' cerebrospinal fluid was satisfactory.  相似文献   

10.
A sensitive electrochemical method for DNA hybridization based on immobilization of DNA probe and [Ru(NH3)5Cl]PF6 complex onto nickel oxide nanomaterials (NiOxnp) modified glassy carbon electrode was developed. Due to strong affinity of NiOxnp for phosphate groups, oligonucleotides probe with a terminal 5′-phosphate group was attached to the surface of the modified electrode. DNA immobilization and hybridization were characterized by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry using K3Fe(CN)6/K4Fe(CN)6 and [Ru(NH3)5Cl]PF6 as probe and indicator, respectively. The Ru-complex current response indicates only the complementary sequence showing an obvious current signal in comparison to non-complementary and three or single point mismatched sequences. The fabricated biosensor possessed good selectivity and sensitivity for complementary probe, taxon: 32630 tumor necrosis factor (TNF). The linear dynamic range, sensitivity and detection limit of the proposed biosensor were 4 × 10−10 M to 1 × 10−8 M, 34.32 nA nM−1 and 6.8 × 10−11 M, respectively. Excellent reproducibility and stability, quite simple and inexpensive preparation are the other advantages of proposed biosensor.  相似文献   

11.
Liu JX  Zhou WJ  Gong JL  Tang L  Zhang Y  Yu HY  Wang B  Xu XM  Zeng GM 《Bioresource technology》2008,99(18):8748-8751
An electrochemical sensor for detection of the activity of laccase from Penicillium simplicissimum isolated from the composting has been developed. The sensor is based on glassy carbon electrode modified with multi-wall carbon nanotubes (CNTs). The introduction of CNTs into this system can greatly enhance the electrochemical signal in this assay more sensitively, selectively and rapidly than that in conventional spectrophotometric assays. It was found that the optimal pH value of the electrolyte was 5.6. The results showed a good linear correlation between the current and the concentration of laccase activities measured by spectrophotometry, where the current slope was measured by chronoamperometry with a coefficient of 0.9835. Therefore, this electrochemical sensor can be used for rapid detection of laccase activity from P. simplicissimum. Furthermore, it may be potentially used for rapid quantification of P. simplicissimum according to the relationship between the laccase activities and the biomass.  相似文献   

12.
We have developed a simple and renewable electrochemical biosensor based on carbon paste electrode (CPE) for the detection of DNA synthesis and hybridization. CPE was modified with gold nanoparticles (AuNPs), which are helpful for immobilization of thiolated bioreceptors. AuNPs were characterized by scanning electron microscopy (SEM). Self-assembled monolayers (SAMs) of thiolated single-stranded DNA (SH–ssDNA) of the amelogenin gene was formed on CPE. The immobilization of the probe and its hybridization with the target DNA was optimized using different experimental conditions. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical response of ssDNA hybridization and DNA synthesis was measured using differential pulse voltammetry (DPV) with methylene blue (MB) as an electroactive indicator. The new biosensor can distinguish between complementary and non-complementary strands of amelogenin ssDNA. Genomic DNA was extracted from blood and was detected based on changes in the MB reduction signal. These results demonstrated that the new biosensor could be used for sex determination. The proposed biosensor in this study could be used for detection and discrimination of polymerase chain reaction (PCR) products of amelogenin DNA.  相似文献   

13.
14.
A highly sensitive method was developed for detection of target DNA. This method combined circular strand-displacement polymerization (CSRP) with silver enhancement to achieve dual signal amplification. After molecular beacon (MB) hybridized with target DNA, the reporter gold nanoparticle (Au NPs) was attached to an electrode surface by hybridization between Au NP labeled primer and stem part of the MB to initiate a polymerization of DNA strand, which led to the release of target and another polymerization cycle. Thus the CSRP produced the multiplication of target-related reporter Au NPs on the surface. The Au NPs then catalyzed silver deposition for subsequent stripping analysis of silver. The dual signal amplification offered a dramatic enhancement of the stripping response. This signal could discriminate perfect matched target DNA from 1-base mismatch DNA. The dynamic range of the sequence-specific DNA detection was from 10(-16) to 10(-12)molL(-1) with a detection limit down to sub-femtomolar level. This proposed method exhibited an efficient amplification performance, and would open new opportunities for sensitive detection of other biorecognition events.  相似文献   

15.
Overoxidized polypyrrole/multi-walled carbon nanotubes (OPPy/MWNTs) modified electrode has been developed for sensitively detecting dopamine (DA). OPPy films developed outside MWNTs might have a porous morphology. Thus, OPPy/MWNTs films developed by this method do not reject ascorbic acid (AA). However, OPPy/MWNTs modified electrode shows largely enhancing oxidative current responses of DA. When combined with liquid chromatography, it not only obtains a low detection limit of 7.5 × 10?10 mol L?1 for DA, but also improves the selectivity of DA detection. Mechanisms for the enhancement are also well discussed in this paper. With this approach, microdialysis has been employed for successful assessment of DA in rat striatum.  相似文献   

16.
A poly-o-phenylenediamine and multi-wall carbon nanotubes composite (PoPD/MWNTs) modified glassy carbon electrode (GCE) was prepared by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. The morphology of the resulting PoPD/MWNTs composite was characterized by TEM and the electrochemical properties of the modified electrode were characterized by cyclic voltammetry. The electrochemical behavior of calcium dobesilate on PoPD/MWNTs modified electrode was also investigated. The large current response of calcium dobesilate on PoPD/MWNTs modified electrode is probably caused by the synergistic effect of the electrocatalytic property of PoPD and MWNTs. The reductive peak current increased linearly with the concentration of calcium dobesilate in the range of 0.1–1.0 μmol/L and 4.0–400 μmol/L by square wave adsorptive stripping voltammetry, respectively. The detection limit (three times the signal blank/slope) was 0.035 μmol/L. The modified electrode could eliminate the interference of dopamine, norepinephrine and epinephrine at 100-, 90- and 70-fold concentration of 1.0 μmol/L calcium dobesilate, respectively. The proposed modified electrode provides a new promising and alternative way to detect calcium dobesilate.  相似文献   

17.
A sensitive and selective genomagnetic assay for the electrochemical detection of food pathogens based on in situ DNA amplification with magnetic primers has been designed. The performance of the genomagnetic assay was firstly demonstrated for a DNA synthetic target by its double-hybridization with both a digoxigenin probe and a biotinylated capture probe, and further binding to streptavidin-modified magnetic beads. The DNA sandwiched target bound on the magnetic beads is then separated by using a magneto electrode based on graphite-epoxy composite. The electrochemical detection is finally achieved by an enzyme marker, anti-digoxigenin horseradish peroxidase (HRP). The novel strategy was used for the rapid and sensitive detection of polymerase chain reaction (PCR) amplified samples. Promising resultants were also achieved for the DNA amplification directly performed on magnetic beads by using a novel magnetic primer, i.e., the up PCR primer bound to magnetic beads. Moreover, the magneto DNA biosensing assay was able to detect changes at single nucleotide polymorphism (SNP) level, when stringent hybridization conditions were used. The reliability of the assay was tested for Salmonella spp., the most important pathogen affecting food safety.  相似文献   

18.
A novel DNA detection method is presented based on a gold nanoparticle (AuNP) colorimetric assay and hybridization chain reaction (HCR). In this method, target DNA hybridized with probe DNA modified on AuNP, and triggered HCR. The resulting HCR products with a large number of negative charges significantly enhanced the stability of AuNPs, inhibiting aggregation of AuNPs at an elevated salt concentration. The approach was highly sensitive and selective. Using this enzyme-free and isothermal signal amplification method, we were able to detect target DNA at concentrations as low as 0.5 nM with the naked eye. Our method also has great potential for detecting other analytes, such as metal ions, proteins, and small molecules, if the target analytes could make HCR products attach to AuNPs.  相似文献   

19.
The present work demonstrates the utility of the functionalized carbon nanotubes, poly(4-aminobenzene sulfonic acid) (PABS) grafted multiwalled carbon nanotubes, MWNT-g-PABS, as an electrode modifier towards achieving ultrasensitive detection of a model drug, sildenafil citrate (SC). PABS units in MWNT-g-PABS interact with SC, pre-concentrate and accumulate at the surface. The electron transduction from SC to electrode is augmented via MWNT-g-PABS. As a result, the MWNT-g-PABS modified electrode exhibited ultrasensitive (57.7 μA/nM) and selective detection of SC with a detection limit of 4.7 pM. The present work provides scope towards targeting ultrasensitivity for the detection of biomolecules/drug through rational design and incorporation of appropriate chemical components to carbon nanotubes.  相似文献   

20.
A two-step reaction cascade is applied to the sequence-specific detection of single-stranded DNA, including analyte-triggered re-activation of apo-aldolase by its cofactor Zn2+ and catalytic conversion of a chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号