首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory selection for the phase angle difference (Ψ, the time from lights-off in a 24 h light–dark cycle to an activity onset) of the adult locomotor activity in Drosophila rajasekari reared in LD (light:dark cycles) of 12:12 h for 59 generations resulted in the early and late strains which differed in Ψ value by about 8 h. The selection affected the activity pattern in LD 12:12; in contrast to the wild-type, which had a broad plateau of activity pattern, the early strain exhibited a biphasic activity pattern with morning and evening peaks, whereas the late strain had a single evening peak which extended for 6 h in the dark. The selection significantly decreased and increased the activity level per cycle in LD 12:12, continuous darkness (DD) and continuous light (LL) in the early and late strains respectiv ely when compared to that of the wild-type (P < 0.01). The free running period (τ) in DD was shortened in the early strain and lengthened in the late strain by the shortening and lengthening of the activity phases respectively, the rest phases remained unchanged in these strains from that of the wild-type. Phase response curves (PRCs) were measured for light pulses in all strains, the PRC for the early strain was characterized by larger phase shifts when compared to the PRC for the late or for the wild type flies. The ability of τ to be progressively lengthened by increasing intensity of LL was increased and decreased in the early and late strains respectively. Moreover, the threshold light intensity of LL to generate arrhythmicity was apparently decreased in the early strain and increased in the late strain, suggesting that the selection for Ψ had differently affected the subjective light sensitivity in these strains.  相似文献   

2.
Circadian rhythm of locomotor activity of the desert beetle T.gigas usually has two narrow peaks: morning (M) and evening (E). While entrained with diurnal (Tz = 24 hr) full or skeleton photoperiods, the M peak is precedes light, while the E peak coincides with light. In a variety of natural and laboratory conditions both peaks tend to maintain a stable mutual phase relationship, about 12 hr apart. The phase responses of the M and E peaks were studied using 6-hr, 30 lx green LED-light pulses applied around ct3, ?t12 and ct18. The PRC for the E peak, plotted versus ct0 (extrapolated moment of light-on) as abscissa, had the same position, as the PRC for the M peak. Both PRCs were asymmetric, but in an opposite way: for the M peak the area of phase advances was bigger, than the area of phase delays, while for the E peak, vice versa. The transient PRCs on day 1, 2 etc. did not differ from the steady state PRC, i.e, the phase response was accomplished virtually in one cycle. Period changes were almost all positive (period became longer after a light pulse). The only "dead zone" in the period response curve (decrease of Dt down to zero) was around subjective evening - early night. Here again, the M peak appeared more "eager" to phase advances than the E peak. Our data support the hypothesis that M and E peaks are controlled by putative separate oscillators. These oscillators seem to have different properties, tend to phase shift to a different extent, and are extremely strongly mutually coupled with phases locked at approximately 180°. The asymmetry of properties of the M and E oscillators has a clear adaptive significance.  相似文献   

3.
Circadian clocks are thought to be essential for timing the daily activity of animals, and consequently increase fitness. This view was recently challenged for clock-less fruit flies and mice that exhibited astonishingly normal activity rhythms under outdoor conditions. Compensatory mechanisms appear to enable even clock mutants to live a normal life in nature. Here, we show that gradual daily increases/decreases of light in the laboratory suffice to provoke normally timed sharp morning (M) and evening (E) activity peaks in clock-less flies. We also show that the compound eyes, but not Cryptochrome (CRY), mediate the precise timing of M and E peaks under natural-like conditions, as CRY-less flies do and eyeless flies do not show these sharp peaks independently of a functional clock. Nevertheless, the circadian clock appears critical for anticipating dusk, as well as for inhibiting sharp activity peaks during midnight. Clock-less flies only increase E activity after dusk and not before the beginning of dusk, and respond strongly to twilight exposure in the middle of the night. Furthermore, the circadian clock responds to natural-like light cycles, by slightly broadening Timeless (TIM) abundance in the clock neurons, and this effect is mediated by CRY.  相似文献   

4.
The rhythms of locomotor activity of male and virgin or mated female flies were compared in the Drosophila melanogaster wild-type strains CantonS, Berlin, and OregonR. Under light-dark conditions, most flies showed a bimodal activity pattern with a morning peak around lights-on and an evening peak before lights-off. For all strains, a distinct sexual dimorphism was observed in the phase of the morning peak. Males had a significantly earlier morning peak than females and consequently a larger phase angle between morning and evening peak (psi(m, e)). Under constant dark conditions, the morning component merged with the evening component to a unimodal activity band in about half of the flies. In those flies who maintained bimodality, the sex-specific difference in psi(m, e) disappeared. Other sex-specific differences were now apparent: Males showed a shorter free-running period than females, and in two of the three strains, females were more active than males. Morning and evening components seem to contribute to the free-running period. Spontaneous or externally provoked change in psi(m, e) were correlated with period changes. In some flies, the morning and the evening components showed splitting, indicating that they are the output of two different oscillators. The sexual dimorphism in the phase of the morning peak under LD-conditions suggests that the function of activity during morning and evening peak might be different, for example, during the morning peak, males are active to find females. Overall, the results underline the multioscillatory nature of Drosophila's circadian system.  相似文献   

5.
The ability to repress P-element-induced gonadal dysgenesis was studied in 14 wild-type strains of D. melanogaster derived from populations in the central and eastern United States. Females from each of these strains had a high ability to repress gonadal dysgenesis in their daughters. Reciprocal hybrids produced by crossing each of the wild-type strains with an M strain demonstrated that repression ability was determined by a complex mixture of chromosomal and cytoplasmic factors. Cytoplasmic transmission of repression ability was observed in all 14 strains and chromosomal transmission was observed in 12 of them. Genomic Southern blots indicated that four of the strains possessed a particular type of P element, called KP, which has been proposed to account for the chromosomal transmission of repression ability. However, in this study several of the strains that lacked KP elements exhibited as much chromosomal transmission of repression ability as the strains that had KP elements, suggesting that other kinds of P elements may be involved.  相似文献   

6.
Circadian rhythms of locomotor activity of the desert beetles T.gigas were entrained with skeleton photoperiods (2x2 hr per circadian cycle 30 lx green LED light pulses). The Zeitgeber period was stepwise reduced by 1 hr down to 22 hr or increased up to 26 hr. Within the range of entrainment, the phase angle Ψ of a circadian rhythm with respect to light depends upon the period of Zeitgeber differently for the morning (M) and evening (E) peak: M is easier to advance, while E is easier to delay. Beyond the range of entrainment both peaks became free-running with some relative coordination. Masking (direct stimulation of activity by light) occurred only during the subjective night, and never in subjective day. In few cases one of two peaks became free-running while its counterpart remained entrained, suggesting that each of the two peaks has its own visual input and can be entrained by light. These results are in agreement with the difference in the PRC shape for the M and E peaks, and support the hypothesis that M and E peaks are controlled by two functionally separate oscillators that have polar different properties, and are extremely strongly mutually coupled with phases locked at about 180°.  相似文献   

7.
The effect of altitude on four basic properties of the pacemaker controlling the circadian rhythm of oviposition in two strains of Drosophila ananassae was determined. The high altitude (HA) strain from Badrinath (5123 m above sea level) had a low amplitude peak in the forenoon while the low altitude (LA) strain from Firozpur (179 m a.s.l.) had a high amplitude peak after the lights-off of LD 12:12 cycles. Free running periods in continuous darkness were about 22.6 and 27.4 h in the HA and LA strains, respectively. The light pulse phase response curve (PRC) for the HA strain showed a low amplitude and a dead zone of 8h; the ratio for the advance to delay region (A/D) was less than 1, while the PRC for the LA strain had a high amplitude, which was devoid of a dead zone and showed a ratio of A/D > 1. The magnitude of the delay phase shifts at CT 18 evoked by light pulses of 1 h duration, but varying light intensity was significantly different in the HA and LA strain, which suggests that the photic sensitivity of the clock photoreceptors mediating the phase shifts had been affected by the altitude.  相似文献   

8.
NaCl-induced changes in the thylakoid membrane of wild-type Anabaena variabilis and its NaClr mutant strain have been studied. Biochemical characterization of the thylakoid membrane was done by taking its absorption and fluorescence spectra at different wavelength. The thylakoid membranes of both strains were isolated by mechanical disruption of the freeze-dried and lysozyme-treated cells, followed by differential and density gradient centrifugation. The light absorption spectra of the thylakoid membrane showed three and two peaks in NaClr mutant strain and its wild-type counterpart respectively at wavelengths of 400–850 nm. These peaks revealed that the thylakoid membrane contains a large amount of carotenoid and chlorophyll a. Fluorescence emission spectra of thylakoid membrane of NaClr mutant and its wild-type strain at excitation wavelength of 335 nm showed two different peaks, one at 340 nm and the other at 663 nm respectively. The light absorption and fluorescence spectra of the thylakoid membrane also revealed that the membrane contained carotenoid pigment, chlorophyll (Chl) a, and a pigment with an emission peak at 335 nm. The HPLC analysis of the pigments of the thylakoid membrane indicates that the NaClr mutant strain under NaCl stress contained an additional peak for the carotenoid pigment, which was lacking in its wild-type counterpart. The major peak in thylakoid membrane was that of echinenone and β-carotene. Whereas the polypeptide composition of thylakoid membrane differed in the wild-type and its NaClr mutant strain, no difference in the cell wall protein pattern was observed in both strains. The thylakoid membrane of NaClr mutant strain contained two additional protein bands that were absent in its wild-type counterpart. The thylakoid membrane of the wild-type and its NaClr mutant strain also showed morphological variations under NaCl stress. Received: 14 April 2000 / Accepted: 23 May 2000  相似文献   

9.
Here, we show that in a skeleton photoperiod where all midday light is removed from a standard laboratory 12:12 LD photoperiod, a large diurnal peak of activity is revealed that is continuous with the E peak seen in constant dark (DD). We further show that the circadian clock gene tim regulates light-dependent masking of daytime activity, but the clock gene per does not. Finally, relative to wild-type flies, mutants for both of these clock genes showed increased nighttime activity in the skeleton photoperiod but not in the standard photoperiod. This result suggests that nighttime activity is suppressed by the intact circadian clock, and in its absence, by exposure to a standard photoperiod. These results support and extend the literature addressing the complex interactions between masking and clock-controlled components of overt circadian rhythms.  相似文献   

10.
By molecular cloning of chromosomal DNA of a human faecal Escherichia coli O6:non-motile strain, we identified a 1350-bp DNA segment which is commonly present in laboratory and wild-type E. coli strains but had no homology to DNA of Shiga-toxin producing E. coli O157, O145 and enteropathogens E. coli O55 strains. The nucleotide sequence of the 1350-bp segment cloned on plasmid pEO67 was determined (GenBank accession number AF087670) and a 97.2% sequence homology was found to a region of the E. coli hemB locus with an unknown gene function. The introduction of pEO67 into an STEC O157:H- strain had a stimulating effect on the growth of the recipient strain which was most expressed when bacteria were grown in iron depleted M9 medium with hemin added as the exogenous iron source. This growth effect was not observed with E. coli K-12 carrying pEO67. We suggest that the cloned gene is involved in iron uptake of E. coli and that the alteration in this part of the hemB locus is clonally inherited in genetically closely related STEC O157 and O55 strains.  相似文献   

11.
Coupling between cyclically varying external light and an endogenous biochemical oscillator known as the circadian clock, modulates a rhythmic pattern with two prominent peaks in the locomotion of Drosophila melanogaster. A morning peak appears around the time lights turn on and an evening peak appears just before lights turn off. The close association between the peaks and the external 12:12 hour light/dark photoperiod means that respective morning and evening peaks of individual flies are well-synchronized in time and, consequently, feature prominently in population-averaged data. Here, we report on a brief but strong stochastic burst in fly activity that, in contrast to morning and evening peaks, is detectable only in single fly recordings. This burst was observed across 3 wild-type strains of Drosophila melanogaster. In a single fly recording, the burst is likely to appear once randomly within 0.5–5 hours after lights turn on, last for only 2–3 minutes and yet show 5 times greater activity compared to the maximum of morning peak with data binned in 3 minutes. Owing to its variable timing and short duration, the burst is virtually undetectable in population-averaged data. We use a locally-built illumination system to study the burst and find that its incidence in a population correlates with light intensity, with ~85% of control flies showing the behavior at 8000 lux (1942 μW/cm2). Consistent with that finding, several mutant flies with impaired vision show substantially reduced frequency of the burst. Additionally, we find that genetic ablation of the clock has insignificant effect on burst frequency. Together, these data suggest that the pronounced burst is likely generated by a light-activated circuit that is independent of the circadian clock.  相似文献   

12.
CP 47, a component of photosystem II (PSII) in higher plants, algae and cyanobacteria, is encoded by the psbB gene. Site-specific mutagenesis has been used to alter a portion of the psbB gene encoding the large extrinsic loop E of CP 47 in the cyanobacterium Synechocystis 6803. Alteration of a lysine residue occurring at position 321 to glycine produced a strain with altered PSII activity. This strain grew at wild-type rates in complete BG-11 media (480 µM chloride). However, oxygen evolution rates for this mutant in complete media were only 60% of the observed wild-type rates. Quantum yield measurements at low light intensities indicated that the mutant had 66% of the fully functional PSII centers contained in the control strain. The mutant proved to be extremely sensitive to photoinactivation at high light intensities, exhibiting a 3-fold increase in the rate of photoinactivation. When this mutant was grown in media depleted of chloride (30 µM chloride), it lost the ability to grow photoautotrophically while the control strain exhibited a normal rate of growth. The effect of chloride depletion on the growth rate of the mutant was reversed by the addition of 480 µM bromide to the chloride-depleted BG-11 media. In the presence of glucose, the mutant and control strains grew at comparable rates in either chloride-containing or chloride-depleted media. Oxygen evolution rates for the mutant were further depressed (28% of control rates) under chloride-limiting conditions. Addition of bromide restored these rates to those observed under chloride-sufficient conditions. Measurements of the variable fluorescence yield indicated that the mutant assembled fewer functional centers in the absence of chloride. These results indicate that the mutation K321G in CP 47 affects PSII stability and/or assembly under conditions where chloride is limiting.  相似文献   

13.
14.
15.
The fruit fly Drosophila melanogaster shows a bimodal circadian locomotor rhythm with peaks at lights-on and before lights-off, which are regulated by multiple clocks in the brain. Even under light-dark cycles, the timing of the evening peak is highly dependent on temperature, starting earlier under lower ambient temperature but terminating almost at the same time. In the present study, using behavioral and immunohistochemical assays, the authors show that separate groups of clock neurons, either light-entrainable or temperature-entrainable, form a functional system driving the locomotor rhythm. When subjected to a light cycle combined with a temperature cycle advanced by 6 h relative to the light cycle, the dorsally located neurons (DNs) and lateral posterior neurons (LPNs) shifted their phase of TIMELESS expression, but the laterally located protocerebral neurons (LNs) basically maintained their original phase. Thus, the LNs seem to be preferentially light-entrainable and the DNs and LPNs to be primarily temperature-entrainable. In pdf(01) mutant flies that lack the neuropeptide PDF in the ventral groups of LNs, the onset of the evening peak was greatly advanced even under synchronized light and temperature cycles and was shifted even more than in wild-type flies in response to a 6-h phase shift of the temperature cycle, suggesting that ventral LNs have a strong impact on the phase of the other cells. It seems likely that the 2 sets of clock cells with different entrainability to light and temperature, and the coupling between them, enable Drosophila to keep a proper phase relationship of circadian activity with respect to the daily light and temperature cycles.  相似文献   

16.
17.
Motility as an intestinal colonization factor for Campylobacter jejuni   总被引:44,自引:0,他引:44  
The colonization of the intestinal tract of suckling mice by Campylobacter jejuni was examined by orally challenging the mice with a wild-type strain and several nonmotile mutant strains which were isolated after treating the wild-type strain with mutagens. The wild-type strain had colonized the lower portion of the small intestine, the caecum and the colon 2 d after inoculation. Two nonmotile strains, one of which (M8) had lost all the flagellar structure including the filament, the hook and the basal structure, and the other (M1) which had lost only the filament region, were both cleared from the intestinal tract 2 d after challenge. Another nonmotile strain (M14), which had a complete flagellar structure like that of the wild-type strain, did not colonize and was cleared from the intestinal tract like the other nonmotile and nonflagellated strains. One atypically motile strain (M5), which had a shorter flagellar filament than that of the wild-type strain, colonized the intestinal tract only when mice were challenged with a large inoculum. None of the mice challenged with either the wild-type or any of the mutant strains showed signs of illness. We concluded that motility is an important factor in the colonization of the intestinal tract of suckling mice by C. jejuni.  相似文献   

18.
We generated random transposon insertion mutants to identify genes involved in light input pathways to the circadian clock of the cyanobacterium Synechococcus elongatus PCC 7942. Two mutants, AMC408-M1 and AMC408-M2, were isolated that responded to a 5-h dark pulse differently from the wild-type strain. The two mutants carried independent transposon insertions in an open reading frame here named ldpA (for light-dependent period). Although the mutants were isolated by a phase shift screening protocol, the actual defect is a conditional alteration in the circadian period. The mutants retain the wild-type ability to phase shift the circadian gene expression (bioluminescent reporter) rhythm if the timing of administration of the dark pulse is corrected for a 1-h shortening of the circadian period in the mutant. Further analysis indicated that the conditional short-period mutant phenotype results from insensitivity to light gradients that normally modulate the circadian period in S. elongatus, lengthening the period at low light intensities. The ldpA gene encodes a polypeptide that predicts a 7Fe-8S cluster-binding motif expected to be involved in redox reactions. We suggest that the LdpA protein modulates the circadian clock as an indirect function of light intensity by sensing changes in cellular physiology.  相似文献   

19.
The sorghum (Sorghum bicolor L. Moench) cultivar 58M, which contains the null mutant phytochrome B gene, shows reduced photoperiodic sensitivity and exhibits a shade-avoidance phenotype. Ethylene production by seedlings of wild-type and phytochrome B mutant cultivars was monitored every 3 h, and both cultivars were found to produce ethylene in a circadian rhythm, with peak production occurring during the day. The phytochrome B mutant produces rhythmic peaks of ethylene with approximately 10 times the amplitude of the wild-type counterpart with the same period and diurnal timing. The source of the mutant's additional ethylene is the shoot. The diurnal rhythm can be produced with either light or temperature cycles; however, both light and temperature cycles are required for circadian entrainment. The temperature signal overrides the light signal in the production of diurnal rhythms, because seedlings grown under thermoperiods reversed with the photoperiod produced ethylene peaks during the warm nights. To examine the effect of extreme shading on ethylene production, seedlings were grown under dim, far-red-enriched light. This treatment duplicated the phytochrome B mutant's shade-avoidance phenotype in the wild type and caused the wild type to produce ethylene peaks similar to those observed in the mutant. The results confirm that phytochrome B is not required for proper function of circadian timing, but it may be involved in modulating physiological rhythms driven by the biological clock oscillator.  相似文献   

20.
The UspA1 and UspA2 proteins of Moraxella catarrhalis are structurally related, are exposed on the bacterial cell surface, and migrate as very high-molecular-weight complexes in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Previous analysis of uspA1 and uspA2 mutants of M. catarrhalis strain 035E indicated that UspA1 was involved in adherence of this organism to Chang conjunctival epithelial cells in vitro and that expression of UspA2 was essential for resistance of this strain to killing by normal human serum (C. Aebi, E. R. Lafontaine, L. D. Cope, J. L. Latimer, S. R. Lumbley, G. H. McCracken, Jr., and E. J. Hansen, Infect. Immun. 66:3113-3119, 1998). In the present study, isogenic uspA1, uspA2, and uspA1 uspA2 mutations were constructed in three additional M. catarrhalis strains: 012E, TTA37, and 046E. The uspA1 mutant of strain 012E had a decreased ability to attach to Chang cells. However, inactivation of the uspA1 gene in both strain TTA37 and strain 046E did not cause a significant decrease in attachment ability. Inactivation of the uspA2 gene of strain TTA37 did result in a loss of attachment ability. Nucleotide sequence analysis revealed that the predicted protein encoded by the uspA2 genes of both strains TTA37 and 046E had a N-terminal half that resembled the N-terminal half of UspA1 proteins, whereas the C-terminal half of this protein was nearly identical to those of previously characterized UspA2 proteins. The gene encoding this "hybrid" protein was designated uspA2H. PCR-based analysis revealed that approximately 20% of M. catarrhalis strains apparently possess a uspA2H gene instead of a uspA2 gene. The M. catarrhalis uspA1, uspA2, and uspA2H genes were cloned and expressed in Haemophilus influenzae cells, which were used to prove that both the UspA1 and UspA2H proteins can function as adhesins in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号