首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract In addition to resistance to kanamycin, transposon Tn 5 confers resistance to streptomycin in Myxococcus xanthus . The streptomycin determinant is located within the Bgl II fragment of Tn 5 . The level of resistance varies among strains bearing Tn 5 insertions in different chromosomal loci and there is a correlation between the levels of resistance to streptomycin and to kanamycin.  相似文献   

2.
《Developmental cell》2021,56(23):3264-3275.e7
  1. Download : Download high-res image (217KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
The multidrug resistance protein MRP4, a member of the ATP-binding cassette superfamily, confers resistance to purine-based antiretroviral agents. However, the antiviral agent ganciclovir (GCV) has not been shown to be a substrate of MRP4. GCV is important not only in antiviral therapy, but also in the selective killing of tumor cells modified to express herpes simplex virus thymidine kinase (HSV-TK). We therefore tested the effect of MRP4 on the cytotoxicity of GCV, on the ability of GCV to kill cells genetically modified to express HSV-TK, and on the bystander effect in which unmodified target cells are killed by GCV. Cells overexpressing MRP4 had markedly increased resistance to the cytotoxicity of GCV. Although, expression of recombinant HSV-TK increased the intracellular concentration of GCV nucleotide, cells were rescued by the cytoprotective effect of MRP4. In cells that overexpressed MRP4, intracellular accumulation of GCV metabolites was reduced, efflux of these metabolites was increased, and resistance to bystander killing was increased. Therefore, MRP4 can strongly reduce the susceptibility of HSV-TK-expressing cells to GCV, and its overexpression in adjacent cells protects them from bystander cell death. These findings indicate that a nucleotide transporter, such as MRP4, modulates the cellular response to GCV and thus may influence not only the efficacy of antiviral therapy, but also prodrug-based gene therapy, which is critically dependent upon bystander cell killing.  相似文献   

5.
A V79 Chinese hamster fibroblast cell line selected for resistance to the toxic effects of 5-fluorouracil (Kaufman, 1984b) was found to be cross-resistant to the toxic effects of the thymidine analog 5-bromodeoxyuridine (BrdUrd). When tested for sensitivity to BrdUrd mutagenesis, the fluorouracil-resistant cells were found to be resistant to mutagenesis induced by high concentrations of BrdUrd in the medium (INC mutagenesis) but not to mutagenesis induced by the replication of DNA containing 5-bromouracil (REP mutagenesis). Analyses of deoxyribonucleoside triphosphate pools indicated that high endogenous dCTP levels in the mutant prevented the high BrdUTP/dCTP ratio associated with INC mutagenesis. However, the mutant phenotype had no effect on the nucleotide pool imbalance associated with REP mutagenesis. This mutant provides further genetic evidence for the existence of two independent mechanisms for BrdUrd mutagenesis in mammalian cells.  相似文献   

6.
Transgenic rice (Oryza sativa L. cv. Pusa basmati 1), overexpressing the Rs-AFP2 defensin gene from the Raphanus sativus was generated by Agrobacterium tumefaciens-mediated transformation. Expression levels of Rs-AFP2 ranged from 0.45 to 0.53% of total soluble protein in transgenic plants. It was observed that constitutive expression of Rs-AFP2 suppresses the growth of Magnaporthe oryzae and Rhizoctonia solani by 77 and 45%, respectively. No effect on plant morphology was observed in the Rs-AFP2 expressing rice lines. The inhibitory activity of protein extracts prepared from leaves of Rs-AFP2 plants on the in vitro growth of M. oryzae indicated that the Rs-AFP2 protein produced by transgenic rice plants was biologically active. Transgene expression of Rs-AFP2 was not accompanied by an induction of pathogenesis-related (PR) gene expression, suggesting that the expression of Rs-AFP2 directly inhibits the pathogens. Here, we demonstrate that transgenic rice plants expressing the Rs-AFP2 gene show enhanced resistance to M. oryzae and R. solani, two of the most important pathogens of rice.  相似文献   

7.
The goal of this study was to assess the antitumor efficacy and safety of lobaplatin-based regimens as the second line of treatment in patients with metastatic breast cancer (MBC) resistant to anthracyclines and taxanes, compared with that of cisplatin-based regimens. During August 2012 to April 2015, 87 patients who received lobaplatin-based regimens or cisplatin-based regimens were included. Medical records of the patients noted that lobaplatin (30?mg/m2) or cisplatin (25?mg/m2), combined with another chemotherapeutic agent such as Gemcitabine (1000?mg/m2) or Vinorelbine (25?mg/m2), was intravenously given to the patients on a basis of twenty-one days as one treatment cycle. All the patients were followed until August 2017. The endpoint of this study was progression-free survival (PFS), overall survival (OS), and estimated objective response rate (RR). Safety and drug tolerability data were also obtained. Lobaplatin-based regimens prolonged PFS compared to cisplatin-based regimens (median 13.2 vs 4.7?months, hazard ratio?=?0.37, 95% confidence intervals: 0.21–0.67, P?=?.0007), while OS was not significantly different between the two groups (hazard ratio?=?0.72, 95% confidence intervals: 0.40–1.30, P?=?.2767), as was objective RR (37.8% vs 33.4%, x2 = 0.19, P?=?.6653). Nausea/vomiting and renal injury were more frequent with cisplatin-based regimens. Our results show that lobaplatin-based regimens are superior to cisplatin in terms of efficacy and are better tolerated.  相似文献   

8.
Magnaporthe oryzae and Rhizoctonia solani, are among the most important pathogens of rice, severely limiting its productivity. Dm-AMP1, an antifungal plant defensin from Dahlia merckii, was expressed in rice (Oryza sativa L. sp. indica cv. Pusa basmati 1) using Agrobacterium tumefaciens-mediated transformation. Expression levels of Dm-AMP1 ranged from 0.43% to 0.57% of total soluble protein in transgenic plants. It was observed that constitutive expression of Dm-AMP1 suppresses the growth of M. oryzae and R. solani by 84% and 72%, respectively. Transgenic expression of Dm-AMP1 was not accompanied by an induction of pathogenesis-related (PR) gene expression, indicating that the expression of DmAMP1 directly inhibits the pathogen. The results of in vitro, in planta and microscopic analyses suggest that Dm-AMP1 expression has the potential to provide broad-spectrum disease resistance in rice.  相似文献   

9.
Oxidative damage to mitochondria is a central mechanism of apoptosis induced by many toxic chemicals. Thioredoxin family proteins share a conserved Cys-X-X-Cys motif at their active center and play important roles in control of cellular redox state and protection against oxidative damage. In addition to the well studied cytosolic and extracellular form (Trx1), rat and avian mitochondrial forms of thioredoxin (mtTrx) have been reported. In this study, we cloned the full-length human mtTrx cDNA and performed localization and functional studies in 143B human osteosarcoma cells. The coding sequence of human mtTrx consists of a region with homology to Trx1 as well as a putative mitochondrial localization signal (MLS) at its N terminus. In stably transfected cell lines, mtTrx had a mitochondrial localization as measured by subcellular fractionation studies and by confocal fluorescence microscopy. Deletion of the MLS rendered mtTrx to be solely expressed in the cytosolic fraction. On SDS-PAGE, transfected mtTrx had the same apparent molecular weight as the MLS truncated form, indicating that the leader sequence is cleaved during or after mitochondrial import. Treatment with the oxidant tert-butylhydroperoxide induced apoptosis in 143B cells. This oxidant-induced apoptosis was inhibited by overexpressing the full-length mtTrx in 143B cells. Thus, human mtTrx is a member of the thioredoxin family of proteins localized to mitochondria and may play important roles in protection against oxidant-induced apoptosis.  相似文献   

10.
The siderophore produced by Erwinia amylovora, the causal agent of fire blight of Maloideae, is one of the virulence factors of this bacterium. The production of siderophores enables E. amylovora to overcome the conditions of iron limitation met in plant tissue, and may also protect the bacteria against active oxygen species produced through the Fenton reaction. In this paper, we have examined the ability of an iron chelator protein, encoded by the bovine lactoferrin gene, to reduce fire blight susceptibility in pear (Pyrus communis L.). Transgenic pear clones expressing this gene controlled by the CaMV35S promoter were produced by Agrobacterium tumefaciens mediated transformation. Transformants were analysed by RT-PCR and western blot to determine lactoferrin expression levels. Most transgenic clones demonstrated significant reduction of susceptibility to fire blight in vitro and in the greenhouse when inoculated by E. amylovora. These transgenic clones also showed a significant reduction of symptoms when inoculated with two other pear bacterial pathogens : Pseudomonas syringae pv. syringae and Agrobacterium tumefaciens. Moreover, we have shown that this increase in bacterial resistance was correlated with an increase in root ferric reductase level activity and leaf iron content. Despite negative effects on the growth of a few clones, our results indicate the potential of lactoferrin gene transformation to protect pear from fire blight through increased iron chelation.  相似文献   

11.
Attempts to complement the defect in the mitomycin C (MMC)-sensitive Chinese hamster ovary (CHO) mutant MMC3 led to the isolation of hybrids with high resistance to the cytotoxic action of the drug. Hybrid cells selected with MMC after fusion of MMC3 cells to human diploid fibroblasts were approximately five times more resistant to MMC than wild-type CHO cells but retained the original MMC3 sensitivity to another DNA cross-linking agent, diepoxybutane. To confirm that the MMC resistance was genetically determined and was of human origin, DNA from the resistant hybrids was introduced into MMC3 cells, and transfectants were selected in MMC. These cells had the same level of MMC resistance as the hybrids. Thus we have identified a human gene that can confer MMC resistance to CHO cells. Identification of the gene should help understand the mechanisms of MMC resistance in mammalian cells.  相似文献   

12.
Expression of bar in the plastid genome confers herbicide resistance   总被引:12,自引:0,他引:12  
Lutz KA  Knapp JE  Maliga P 《Plant physiology》2001,125(4):1585-1590
Phosphinothricin (PPT) is the active component of a family of environmentally safe, nonselective herbicides. Resistance to PPT in transgenic crops has been reported by nuclear expression of a bar transgene encoding phosphinothricin acetyltransferase, a detoxifying enzyme. We report here expression of a bacterial bar gene (b-bar1) in tobacco (Nicotiana tabacum cv Petit Havana) plastids that confers field-level tolerance to Liberty, an herbicide containing PPT. We also describe a second bacterial bar gene (b-bar2) and a codon-optimized synthetic bar (s-bar) gene with significantly elevated levels of expression in plastids (>7% of total soluble cellular protein). Although these genes are expressed at a high level, direct selection thus far did not yield transplastomic clones, indicating that subcellular localization rather than the absolute amount of the enzyme is critical for direct selection of transgenic clones. The codon-modified s-bar gene is poorly expressed in Escherichia coli, a common enteric bacterium, due to differences in codon use. We propose to use codon usage differences as a precautionary measure to prevent expression of marker genes in the unlikely event of horizontal gene transfer from plastids to bacteria. Localization of the bar gene in the plastid genome is an attractive alternative to incorporation in the nuclear genome since there is no transmission of plastid-encoded genes via pollen.  相似文献   

13.
Hyperacute rejection (HAR) is the first critical immunological hurdle that must be addressed in order to develop xenogeneic organs for human transplantation. In the area of cell-based xenotransplant therapies, natural antibodies (XNA) and complement have also been considered barriers to successful engraftment. Transgenic expression of human complement inhibitors in donor cells and organs has significantly prolonged the survival of xenografts. However, expression of complement inhibitors without eliminating xenogeneic natural antibody (XNA) reactivity may provide insufficient protection for clinical application. An approach designed to prevent XNA reactivity during HAR is the expression of human alpha1, 2-fucosyltransferase (H-transferase, HT). H-transferase expression modifies the cell surface carbohydrate phenotype of the xenogeneic cell, resulting in the expression of the universal donor O antigen and a concomitant reduction in the expression of the antigenic Galalpha1,3-Gal epitope. We have engineered various transgenic pig lines that express HT in different cells and tissues, including the vascular endothelium. We demonstrate that in two different HT transgenic lines containing two different HT promoter constructs, expression can be differentially regulated in a constitutive and cytokine-inducible manner. The transgenic expression of HT results in a significant reduction in the expression of the Galalpha1,3-Gal epitope, reduced XNA reactivity, and an increased resistance to human serum-mediated cytolysis. Transgenic pigs that express H-transferase promise to become key components for the development of xenogeneic cells and organs for human transplantation.  相似文献   

14.
Tobacco plants were genetically engineered to express a detoxifying pathway for the herbicide phenmedipham. A gene fromArthrobacter oxidans strain P52 that encodes an enzyme catalysing the hydrolytic cleavage of the carbamate compound phenmedipham has recently been cloned and sequenced. The coding sequence was fused with a cauliflower mosaic virus 35S promoter and introduced into tobacco plants byAgrobacterium-mediated gene transfer. Transgenic plants expressing high levels of phenmedipham hydrolase exhibited resistance when sprayed with the herbicide at up to ten times the usual field application rate.  相似文献   

15.
Engineering durable nonspecific resistance to phytopathogens is one of the ultimate goals of plant breeding. However, most attempts to reach this goal fail as a result of rapid changes in pathogen populations and the sheer diversity of pathogen infection mechanisms. In this study, we show that the expression of a harpin-encoding gene ( hrf1 ), derived from Xanthomonas oryzae pv. oryzae, confers nonspecific resistance in rice to the blast fungus Magnaporthe grisea . Transgenic plants and their T1–T7 progenies were highly resistant to all major M. grisea races in rice-growing areas along the Yangtze River, China. The expression of defence-related genes was activated in resistant transgenic plants, and the formation of melanized appressoria, which is essential for foliar infection, was inhibited on plant leaves. These results suggest that harpins may offer new opportunities for generating broad-spectrum disease resistance in other crops.  相似文献   

16.
Obesity often leads non-alcoholic fatty liver disease, insulin resistance and hyperlipidemia. Expression of carboxylesterase CES1 is positively correlated with increased lipid storage and plasma lipid concentration. Here we investigated structural and metabolic consequences of a single nucleotide polymorphism in CES1 gene that results in p.Gly143Glu amino acid substitution. We generated a humanized mouse model expressing CES1WT (control), CES1G143E and catalytically dead CES1S221A (negative control) in the liver in the absence of endogenous expression of the mouse orthologous gene. We show that the CES1G143E variant exhibits only 20% of the wild-type lipolytic activity. High-fat diet fed mice expressing CES1G143E had reduced liver and plasma triacylglycerol levels. The mechanism by which decreased CES1 activity exerts this hypolipidemic phenotype was determined to include decreased very-low density lipoprotein secretion, decreased expression of hepatic lipogenic genes and increased fatty acid oxidation as determined by increased plasma ketone bodies and hepatic mitochondrial electron transport chain protein abundance. We conclude that attenuation of human CES1 activity provides a beneficial effect on hepatic lipid metabolism. These studies also suggest that CES1 is a potential therapeutic target for non-alcoholic fatty liver disease management.  相似文献   

17.
Niu QW  Lin SS  Reyes JL  Chen KC  Wu HW  Yeh SD  Chua NH 《Nature biotechnology》2006,24(11):1420-1428
Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69(159) and amiR-HC-Pro(159) are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP(159) targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69(159) and amiR-HC-Pro(159) from a dimeric pre-amiR-P69(159)/amiR-HC-Pro(159) transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 degrees C, a temperature that compromises small interfering RNA-mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.  相似文献   

18.
We have previously reported that the CD14+ monocytic subpopulation of human PBMC induces programmed cell death (apoptosis) in cocultured endothelial cells (EC) when stimulated by bacterial endotoxin (LPS). Apoptosis is mediated by two routes, first via transmembrane TNF-alpha (mTNF) expressed on PBMC and, in addition, by TNF-independent soluble factors that trigger apoptosis in EC. Neutralizing anti-TNF mAb completely blocked coculture-mediated apoptosis, despite the fact that there should have been additional soluble cell death factors. This led to the hypothesis that a reverse signal is transmitted from the TNF receptor on EC to monocytes (MO) via mTNF that prevents the production of soluble apoptotic factors. Here we have tested this hypothesis. The results support the idea of a bidirectional cross-talk between MO and EC. Peripheral blood MO, MO-derived macrophages (MPhi), or the monocytic cell line Mono Mac 6 were preincubated with human microvascular EC that constitutively express TNF receptor type I (TNF-R1) and subsequently stimulated with LPS. Cell-free supernatants of these preparations no longer induced EC apoptosis. The preincubation of MO/MPhi with TNF-reactive agents, such as mAb and soluble receptors, also blocked the production of death factors, providing further evidence for reverse signaling via mTNF. Finally, we show that reverse signaling through mTNF mediated LPS resistance in MO/MPhi as indicated by the down-regulation of LPS-induced soluble TNF and IL-6 as well as IL-1 and IL-10.  相似文献   

19.
20.
The damaging effects of intestinal ischemia-reperfusion (I/R) on the gut and remote organs can be attenuated by subjecting the intestine to a prior, less severe I/R insult, a process known as preconditioning. Because intestines of hibernating ground squirrels experience repeated cycles of hypoperfusion and reperfusion, we examined whether hibernation serves as a model for natural preconditioning against I/R-induced injury. We induced intestinal I/R in either the entire gut or in isolated intestinal loops using rats, summer ground squirrels, and hibernating squirrels during natural interbout arousals (IBA; body temperature 37-39 degrees C). In both models, I/R induced less mucosal damage in IBA squirrels than in summer squirrels or rats. Superior mesenteric artery I/R increased MPO activity in the gut mucosa and lung of rats and summer squirrels and the liver of rats but had no effect in IBA squirrels. I/R in isolated loops increased luminal albumin levels, suggesting increased gut permeability in rats and summer squirrels but not IBA squirrels. The results suggest that the hibernation phenotype is associated with natural protection against intestinal I/R injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号