首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The aim of the present study was to specifically silence the rat ATP-binding cassette transporter G2 (rABCG2) gene in brain capillary endothelial cells by transfection of short interfering RNA (siRNA). Four different siRNAs designed to target rABCG2 were each transfected into HEK293 cells with myc-tagged rABCG2 cDNA. Quantitative real-time PCR and western blot analyses revealed that three of the siRNAs were able to reduce exogenous rABCG2 mRNA and protein levels in HEK293 cells. Moreover, rABCG2-mediated mitoxantrone efflux transport was suppressed by the introduction of these three siRNAs into HEK293 cells. In contrast, the other siRNA and non-specific control siRNA did not significantly affect the mRNA expression, the protein level or the transport activity. Endogenous rABCG2 mRNA and protein expression in a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB13) was suppressed by the most potent siRNA among the four siRNAs tested. Furthermore, this siRNA did not affect the mRNA levels of other ABC transporters, such as ABCB1, ABCC1 and ABCG1, and the protein level of ABCB1 in TR-BBB13 cells, suggesting that it can selectively silence rABCG2 at the blood-brain barrier. This should be a useful and novel strategy for clarifying the contribution of rABCG2 to brain-to-blood transport of substrate drugs and endogenous compounds across the blood-brain barrier.  相似文献   

2.
The multixenobiotic resistance (closely related to multidrug resistance) system controls transport across the plasma membrane as a defense against toxic molecules. Multixenobiotic resistance system consists of an efflux pump, ABCB1 (also named P-glycoprotein, P-gp), and/or a molecule of the ABCC family (also named multiple resistance associated protein, MRP). ABCB1 is able to increase efflux of many low-molecular foreign molecules. Measuring system induction may be used as a biomarker of cell/organism exposure to foreign substances. Various established cell lines were tested for constitutive and induced multixenobiotic resistance proteins by Western blotting immunodetection. The pumping function was indirectly assayed with Rhodamine B by visualization of cell fluorescence in the presence of verapamil. Changes in ABC proteins were measured by flow cytometry after exposition to various perfluorinated carboxylic acids. MCF7 and HeLa cells were found to contain the highest constitutive level of both ABCB1 and ABCC1. HEK293 exhibited much less ABCB1 and no activity of pumping out Rhodamine B. The pumping activity was found to be related to the amount of the cell-type specific 170 kDa ABCB1 protein. An 8-day exposure to 10(-4) M perfluorononanoic acid resulted in about 2-2.5-fold increase of ABCB1 level. That was confirmed also for short times by flow cytometry of cells exposed to perfluorinated acids and its natural congeners. Both ABCB1- and ABCC1-related fluorescence increased along with the carbon chain in acids from C(6) up to C(9) and decreased for C(10). Measuring of multixenobiotic resistance changes in vitro induced by chemicals may be a convenient test for screening for their potential toxicity.  相似文献   

3.
We have cloned full-length human and mouse cDNAs of ABCB9, which encodes a predicted multiple-spanning transmembrane domain and a nucleotide-binding domain with Walker motifs. It is therefore designated as a "half" ATP binding cassette (ABC) transporter. Northern analysis shows that the ABCB9 mRNA is expressed at a high level in testes and moderate levels in brain and spinal cord. A splice variant mRNA deleted in the last pair of predicted transmembrane segments was shown to be expressed in human tissues. Phylogenetic analysis indicates that ABCB9 is closely related to TAP1 and TAP2, two "half" ABC proteins found in endoplasmic reticulum. ABCB9 protein colocalized with the lysosomal markers, LAMP1 and LAMP2, in transfected cells. ABCB9 protein appears to be most highly expressed in the Sertoli cells of the seminiferous tubules in mouse and rat testes. These cells have high levels of phagocytosis and secretory activities. These findings pave the way for further investigation into the potential novel function of ABCB9 in lysosomes.  相似文献   

4.
In this study we investigated the effect of linsitinib on the reversal of multidrug resistance (MDR) mediated by the overexpression of the ATP-binding cassette (ABC) subfamily members ABCB1, ABCG2, ABCC1 and ABCC10. Our results indicate for the first time that linsitinib significantly potentiate the effect of anti-neoplastic drugs mitoxantrone (MX) and SN-38 in ABCG2-overexpressing cells; paclitaxel, docetaxel and vinblastine in ABCC10-overexpressing cells. Linsitinib moderately enhanced the cytotoxicity of vincristine in cell lines overexpressing ABCB1, whereas it did not alter the cytotoxicity of substrates of ABCC1. Furthermore, linsitinib significantly increased the intracellular accumulation and decreased the efflux of [3H]-MX in ABCG2-overexpressing cells and [3H]-paclitaxel in ABCC10-overexpressing cells. However, linsitinib, at a concentration that reversed MDR, did not significantly alter the expression levels of either the ABCG2 or ABCC10 transporter proteins. Furthermore, linsitinib did not significantly alter the intracellular localization of ABCG2 or ABCC10. Moreover, linsitinib stimulated the ATPase activity of ABCG2 in a concentration-dependent manner. Overall, our study suggests that linsitinib attenuates ABCG2- and ABCC10-mediated MDR by directly inhibiting their function as opposed to altering ABCG2 or ABCC10 protein expression.  相似文献   

5.
ABCG2 (also called MXR (3), BCRP (4), or ABCP (5) is a recently-identified ABC half-transporter, which causes multidrug resistance in cancer. Here we report that the expression of the ABCG2 protein in Sf9 insect cells resulted in a high-capacity, vanadate-sensitive ATPase activity in isolated membrane preparations. ABCG2 was expressed underglycosylated, and its ATPase activity was stimulated by daunorubicin, doxorubicin, mitoxantrone, prazosin and rhodamine 123, compounds known to be transported by this protein. ABCG2-ATPase was inhibited by low concentrations of Na-orthovanadate, N-ethylmaleimide and cyclosporin A. Verapamil had no effect, while Fumitremorgin C, reversing ABCG2-dependent cancer drug resistance, strongly inhibited this ATPase activity. The functional expression of ABCG2 in this heterologous system indicates that no additional partner protein is required for the activity of this multidrug transporter, probably working as a homodimer. We suggest that the Sf9 cell membrane ATPase system is an efficient tool for examining the interactions of ABCG2 with pharmacological agents.  相似文献   

6.
The mitochondrial ATP binding cassette transporter ABCB6 has been associated with a broad range of physiological functions, including growth and development, therapy-related drug resistance, and the new blood group system Langereis. ABCB6 has been proposed to regulate heme synthesis by shuttling coproporphyrinogen III from the cytoplasm into the mitochondria. However, direct functional information of the transport complex is not known. To understand the role of ABCB6 in mitochondrial transport, we developed an in vitro system with pure and active protein. ABCB6 overexpressed in HEK293 cells was solubilized from mitochondrial membranes and purified to homogeneity. Purified ABCB6 showed a high binding affinity for MgATP (Kd = 0.18 μm) and an ATPase activity with a Km of 0.99 mm. Reconstitution of ABCB6 into liposomes allowed biochemical characterization of the ATPase including (i) substrate-stimulated ATPase activity, (ii) transport kinetics of its proposed endogenous substrate coproporphyrinogen III, and (iii) transport kinetics of substrates identified using a high throughput screening assay. Mutagenesis of the conserved lysine to alanine (K629A) in the Walker A motif abolished ATP hydrolysis and substrate transport. These results suggest a direct interaction between mitochondrial ABCB6 and its transport substrates that is critical for the activity of the transporter. Furthermore, the simple immunoaffinity purification of ABCB6 to near homogeneity and efficient reconstitution of ABCB6 into liposomes might provide the basis for future studies on the structure/function of ABCB6.  相似文献   

7.
The human multidrug resistance protein 3 (MDR3/ABCB4) belongs to the ubiquitous family of ATP-binding cassette (ABC) transporters and is located in the canalicular membrane of hepatocytes. There it flops the phospholipids of the phosphatidylcholine (PC) family from the inner to the outer leaflet. Here, we report the characterization of wild type MDR3 and the Q1174E mutant, which was identified previously in a patient with progressive familial intrahepatic cholestasis type 3 (PFIC-3). We expressed different variants of MDR3 in the yeast Pichia pastoris, purified the proteins via tandem affinity chromatography, and determined MDR3-specific ATPase activity in the presence or absence of phospholipids. The ATPase activity of wild type MDR3 was stimulated 2-fold by liver PC or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine lipids. Furthermore, the cross-linking of MDR3 with a thiol-reactive fluorophore blocked ATP hydrolysis and exhibited no PC stimulation. Similarly, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin lipids did not induce an increase of wild type MDR3 ATPase activity. The phosphate analogues beryllium fluoride and aluminum fluoride led to complete inhibition of ATPase activity, whereas orthovanadate inhibited exclusively the PC-stimulated ATPase activity of MDR3. The Q1174E mutation is located in the nucleotide-binding domain in direct proximity of the leucine of the ABC signature motif and extended the X loop, which is found in ABC exporters. Our data on the Q1174E mutant demonstrated basal ATPase activity, but PC lipids were incapable of stimulating ATPase activity highlighting the role of the extended X loop in the cross-talk of the nucleotide-binding domain and the transmembrane domain.  相似文献   

8.
Overexpression of ATP-binding cassette (ABC) transporter is one of the most important factors taking responsibility for the progress of multidrug resistance (MDR) in multiple cancers. In this study, we investigated that veliparib, a PARP inhibitor which is in clinical development, could overcome ABCB1-mediated MDR in liver cancer cells. Veliparib could significantly enhance the cytotoxic effects of a series of conventional chemotherapeutic drugs in ABCB1-overexpression liver cancer cells. Mechanism study showed that veliparib could significantly enhance the accumulation of doxorubicin in ABCB1-overexpression liver cancer cells, without down-regulating the expression level of ABCB1. Finally, veliparib could significantly inhibit the ATPase activity of ABCB1 transporter. This study could provide information that combine veliparib with other chemotherapeutic drugs may benefit liver cancer patients.  相似文献   

9.
LmrA is an ATP binding cassette (ABC) multidrug transporter in Lactococcus lactis that is a structural and functional homologue of the human multidrug resistance P-glycoprotein MDR1 (ABCB1). LmrA is also homologous to MsbA, an essential ABC transporter in Escherichia coli involved in the trafficking of lipids, including Lipid A. We have compared the substrate specificities of LmrA and MsbA in detail. Surprisingly, LmrA was able to functionally substitute for a temperature-sensitive mutant MsbA in E. coli WD2 at non-permissive temperatures, suggesting that LmrA could transport Lipid A. LmrA also exhibited a Lipid A-stimulated, vanadate-sensitive ATPase activity. Reciprocally, the expression of MsbA conferred multidrug resistance on E. coli. Similar to LmrA, MsbA interacted with photoactivatable substrate [3H]azidopine, displayed a daunomycin, vinblastine, and Hoechst 33342-stimulated vanadate-sensitive ATPase activity, and mediated the transport of ethidium from cells and Hoechst 33342 in proteoliposomes containing purified and functionally reconstituted protein. Taken together, these data demonstrate that MsbA and LmrA have overlapping substrate specificities. Our observations imply the presence of structural elements in the recently published crystal structures of MsbA in E. coli and Vibrio cholera (Chang, G., and Roth, C. B. (2001) Science 293, 1793-1800; Chang, G. (2003) J. Mol. Biol. 330, 419-430) that support drug-protein interactions and suggest a possible role for LmrA in lipid trafficking in L. lactis.  相似文献   

10.
11.
We recently reported alkoxyl biphenyl derivatives bearing dibenzo[c,e]azepine scaffold as novel P-glycoprotein (P-gp, ABCB1) inhibitors. In this study, their ability to reverse breast cancer resistance protein (BCRP, ABCG2)-mediated multidrug resistance was tested in HEK293/BCRP cells which was BCRP-transfected stable HEK293 cells. It was observed that compounds 4d, 4h, 4i increased mitoxantrone accumulation in HEK293/BCRP cells via inhibiting BCRP efflux function. Notably, the inhibitory activity of 4i was comparable to that of the classical BCRP inhibitor Ko143 at an equimolar concentration. Interestingly, 4i had little inhibitory effect on multidrug resistance-associated protein 1 (MRP1, ABCC1), another drug efflux transporter. These results, together with the previous findings, suggest that 4i may be a dual inhibitor of P-gp and BCRP to warrant further investigation.  相似文献   

12.
The multidrug resistance protein MRP2 (ABCC2) acts as an ATP-dependent conjugate export pump in apical membranes of polarized cells and confers multidrug resistance. Purified MRP2 is essential for the detailed functional characterization of this member of the family of ATP-binding cassette (ABC) transporter proteins. In human embryonic kidney cells (HEK293), we have permanently expressed MRP2 containing an additional C-terminal (His)6-tag. Immunoblot and immunofluorescence analyses detected the MRP2-(His)6 overexpressing clones. Isolated membrane vesicles from the MRP2-(His)6-expressing cells were active in ATP-dependent transport of the glutathione S-conjugate leukotriene C4 and were photoaffinity-labelled with 8-azido-[alpha-32P]ATP. MRP2-(His)6 was solubilized from membranes of MRP2-(His)6-cells and purified to homogeneity in a three-step procedure using immobilized metal affinity chromatography, desalting, and immunoaffinity chromatography. The identity of the pure MRP2-(His)6 was verified by MS analysis of tryptic peptides. The purified MRP2-(His)6 glycoprotein was reconstituted into proteoliposomes and showed functional activity as ATPase in a protein-dependent manner with a Km for ATP of 2.1 mM and a Vmax of 25 nmol ADP x mg MRP2-1 x min-1. This ATPase activity was substrate-stimulated by oxidized and reduced glutathione and by S-decyl-glutathione. Future studies using pure MRP2 reconstituted in proteoliposomes should allow further insight into the molecular parameters contributing to MRP2 transport function and to define its intracellular partners for transport and multidrug resistance.  相似文献   

13.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette (ABC) polytopic membrane transporter of considerable clinical importance that confers multidrug resistance on tumor cells by reducing drug accumulation by active efflux. MRP1 is also an efficient transporter of conjugated organic anions. Like other ABC proteins, including the drug resistance conferring 170-kDa P-glycoprotein (ABCB1), the 190-kDa MRP1 has a core structure consisting of two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD). However, unlike P-glycoprotein and most other ABC superfamily members, MRP1 contains a third MSD with five predicted transmembrane segments with an extracytosolic NH(2) terminus. Moreover, the two nucleotide-binding domains of MRP1 are considerably more divergent than those of P-glycoprotein. In the present study, the first structural details of MRP1 purified from drug-resistant lung cancer cells have been obtained by electron microscopy of negatively stained single particles and two-dimensional crystals formed after reconstitution of purified protein with lipids. The crystals display p2 symmetry with a single dimer of MRP1 in the unit cell. The overall dimensions of the MRP1 monomer are approximately 80 x 100 A. The MRP1 monomer shows some pseudo-2-fold symmetry in projection, and in some orientations of the detergent-solubilized particles, displays a stain filled depression (putative pore) appearing toward the center of the molecule, presumably to enable transport of substrates. These data represent the first structural information of this transporter to approximately 22-A resolution and provide direct structural evidence for a dimeric association of the transporter in a reconstituted lipid bilayer.  相似文献   

14.
Bioluminescence imaging (BLI) of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI readout intensity from intact living cells. To investigate the effect of ATP-binding cassette (ABC) transporters on BLI readout, we generated click beetle (cLuc), firefly (fLuc), Renilla (rLuc), and Gaussia (gLuc) luciferase HEK-293 reporter cells that overexpressed different ABC transporters (ABCB1, ABCC1, and ABCG2). In vitro studies showed a significant BLI intensity decrease in intact cells compared to cell lysates, when ABCG2 was overexpressed in HEK-293/cLuc, fLuc, and rLuc cells. Selective ABC transporter inhibitors were also applied. Inhibition of ABCG2 activity increased the BLI intensity more than two-fold in HEK-293/cLuc, fLuc, and rLuc cells; inhibition of ABCB1 elevated the BLI intensity two-fold only in HEK-293/rLuc cells. BLI of xenografts derived from HEK-293/ABC transporter/luciferase reporter cells confirmed the results of inhibitor treatment in vivo. These findings demonstrate that coelenterazine-based rLuc-BLI intensity can be modulated by ABCB1 and ABCG2. ABCG2 modulates d-luciferin-based BLI in a luciferase type-independent manner. Little ABC transporter effect on gLuc-BLI intensity is observed because a large fraction of gLuc is secreted. The expression level of ABC transporters is one key factor affecting BLI intensity, and this may be particularly important in luciferase-based applications in stem cell research.  相似文献   

15.
We report here that the androgen receptor (AR) and ABCB1 are upregulated in a model of acquired taxol resistance (txr) in ovarian carcinoma cells. AR silencing sensitizes txr cells to taxol threefold, whereas ectopic AR expression in AR-null HEK293 cells induces resistance to taxol by 1.7-fold. AR activation using the agonist dihydrotestosterone (DHT) or sublethal taxol treatment upregulates ABCB1 expression in both txr cells and AR-expressing HEK293 cells. In contrast, AR inactivation using the antagonist bicalutamide downregulates ABCB1 expression and enhances cytotoxicity to taxol. A functional ABCB1 promoter containing five predicted androgen-response elements (AREs) is cloned. Deletion assays reveal a taxol-responsive promoter segment which harbors ARE4. Notably, DHT- or taxol-activated AR potentiates binding of the AR to ARE4 as revealed by the chromatin immunoprecipitation. On the other hand, txr cells display an increase in chromatin remodeling. AR/H3K9ac and AR/H3K14ac complexes bind specifically to ARE4 in response to taxol. Furthermore, acetyltransferase protein levels (p300 and GCN5) are upregulated in txr cells. Silencing of p300 or GCN5 reduces chromatin modification and enhances cytotoxicity in both parental and txr SKOV3 cells. While the phosphatidylinositol 3-kinase (PI3K)/serine/threonine protein kinase (AKT) pathway is significantly activated by taxol, taxol-induced ABCB1 expression, histone posttranslational modifications, and p300 binding to ARE4 are suppressed following inhibition of the PI3K/AKT cellular pathway. These results demonstrate that the AKT/p300/AR axis can be activated to target ABCB1 gene expression in response to taxol, thus revealing a new treatment target to counter taxol resistance.  相似文献   

16.
Multidrug resistance (MDR) has been shown to reduce the effectiveness of chemotherapy. Strategies to overcoming MDR have been widely explored in the last decades, leading to a generation of numerous small molecules targeting ABC and MRP transporters. Among the ABC family, ABCB1 plays key roles in the development of drug resistance and is the most well studied. In this work, we report the discovery of a non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) from our structurally diverse in-house compound collection that selectively modulates ABCB1-mediated multidrug resistance. WS-10 enhanced the intracellular accumulation of paclitaxel in SW620/Ad300 cells, but did not affect the expression of ABCB1 Protein and ABCB1 localization. The cellular thermal shift assay (CETSA) showed that WS-10 was able to bind to ABCB1, which could be responsible for the reversal effect of WS-10 toward paclitaxel and doxorubicin in SW620/Ad300 cells. Docking simulations were performed to show the possible binding modes of WS-10 within ABCB1 transporter. To conclude, WS-10 could be used as a template for designing new ABCB1 modulators to overcome ABCB1-mediated multidrug resistance.  相似文献   

17.
Multidrug resistance (MDR) has been shown to reduce the effectiveness of chemotherapy. Strategies to overcoming MDR have been widely explored in the last decades, leading to a generation of numerous small molecules targeting ABC and MRP transporters. Among the ABC family, ABCB1 plays key roles in the development of drug resistance and is the most well studied. In this work, we report the discovery of non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) from our structurally diverse in-house compound collection that selectively modulates ABCB1-mediated multidrug resistance. WS-10 enhanced the intracellular accumulation of paclitaxel in SW620/Ad300 cells, but did not affect the expression of ABCB1 Protein and ABCB1 localization. The cellular thermal shift assay (CETSA) showed that WS-10 was able to bind to ABCB1, which could be responsible for the reversal effect of WS-10 toward paclitaxel and doxorubicin in SW620/Ad300 cells. Docking simulations were performed to show the possible binding modes of WS-10 within ABCB1 transporter. To conclude, WS-10 could be used as a template for designing new ABCB1 modulators to overcome ABCB1-mediated multidrug resistance.  相似文献   

18.
《Phytomedicine》2014,21(12):1725-1732
Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.  相似文献   

19.
The human ABCG2 multidrug transporter provides protection against numerous toxic compounds and causes multidrug resistance in cancer. Here we examined the effects of changes in membrane cholesterol on the function of this protein. Human ABCG2 was expressed in mammalian and in Sf9 insect cells, and membrane cholesterol depletion or enrichment was achieved by preincubation with beta cyclodextrin or its cholesterol-loaded form. We found that mild cholesterol depletion of intact mammalian cells inhibited ABCG2-dependent dye and drug extrusion in a reversible fashion, while the membrane localization of the transporter protein was unchanged. Cholesterol enrichment of cholesterol-poor Sf9 cell membrane vesicles greatly increased ABCG2-driven substrate uptake, substrate-stimulated ATPase activity, as well as the formation of a catalytic cycle intermediate (nucleotide trapping). Interestingly, modulation of membrane cholesterol did not significantly affect the function of the R482G or R482T substrate mutant ABCG2 variants, or that of the MDR1 transporter. The selective, major effect of membrane cholesterol on the wild-type ABCG2 suggests a regulation of the activity of this multidrug transporter during processing or in membrane micro-domain interactions. The experimental recognition of physiological and pharmacological substrates of ABCG2, as well as the fight against cancer multidrug resistance may be facilitated by demonstrating the key role of membrane cholesterol in this transport activity.  相似文献   

20.
The human ABCG2 multidrug transporter provides protection against numerous toxic compounds and causes multidrug resistance in cancer. Here we examined the effects of changes in membrane cholesterol on the function of this protein. Human ABCG2 was expressed in mammalian and in Sf9 insect cells, and membrane cholesterol depletion or enrichment was achieved by preincubation with beta cyclodextrin or its cholesterol-loaded form. We found that mild cholesterol depletion of intact mammalian cells inhibited ABCG2-dependent dye and drug extrusion in a reversible fashion, while the membrane localization of the transporter protein was unchanged. Cholesterol enrichment of cholesterol-poor Sf9 cell membrane vesicles greatly increased ABCG2-driven substrate uptake, substrate-stimulated ATPase activity, as well as the formation of a catalytic cycle intermediate (nucleotide trapping). Interestingly, modulation of membrane cholesterol did not significantly affect the function of the R482G or R482T substrate mutant ABCG2 variants, or that of the MDR1 transporter. The selective, major effect of membrane cholesterol on the wild-type ABCG2 suggests a regulation of the activity of this multidrug transporter during processing or in membrane micro-domain interactions. The experimental recognition of physiological and pharmacological substrates of ABCG2, as well as the fight against cancer multidrug resistance may be facilitated by demonstrating the key role of membrane cholesterol in this transport activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号