首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylmercury (MeHg) is well known as a neurotoxic chemical. However, little is mentioned about its neurotoxic mechanism or molecular target in human neuronal cells in particular. We show in this study that exposure of human neuronal cell line, SH-SY5Y, to MeHg dose- and time-dependently impairs viability and mRNA expression of selenoprotein W (SeW) with a significant difference, unlike other selenoenzymes such as, SeP, GPX4, 5DI, and 5'DI. Using real-time RT PCR, the influence of selenium (Se) and glutathione (GSH) on SeW expression was also investigated. While Se depletion caused a weakly reduced SeW mRNA levels, additional Se caused an increase of SeW mRNA levels. Although 2 mM GSH had induced a weak shift on SeW level, the expression of SeW mRNA was down-regulated in SH-SY5Y cells treated with 25 microM BSO, an inhibitor of GSH synthesis. To understand the relationship between a decrease of SeW expression and intracellular GSH and ROS, we measured the concentration of intracellular GSH and ROS in cells treated to 1.4 microM MeHg using fluorescence based assays. A positive correlation was found between SeW mRNA level and intracellular GSH but no significant correlation was observed between intracellular ROS and SeW mRNA level or intracellular GSH contents. Therefore, we suggest that SeW is the novel molecular target of MeHg in human neuronal cells and down-regulation of this selenoenzyme by MeHg is dependent not on generation of ROS but on depletion of GSH.  相似文献   

2.
Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 microM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure (t1/2 = 1.6 hr). Removal of BSO resulted in a rapid regeneration of GSH after 50 microM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 microM. Treatment with either of these two concentrations of BSO for up to 14 hr did not affect cell growth or viability. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 microM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. GSH depletion had the effect of shifting the enhancement ratio vs pO2 curve to lower oxygen tensions, making oxygen appear more efficient by a factor of approximately 2, based on the pO2 required to give an OER of 2.0. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. Thus MISO appeared to be more efficient in GSH-depleted cells by a factor of 13.5. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone (ER = 1.29-1.41). The effect of GSH depletion was approximately equal at all sensitizer concentrations tested, except at high oxygen tensions, where the effect was insignificantly small. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms.  相似文献   

3.
Treatment of A549 human lung carcinoma cells with L-buthionine-[S,R]-sulfoximine (BSO) results concomitantly in cellular glutathione (GSH) depletion and growth inhibition. The nature of BSO effects on cell growth and the relationships between BSO inhibition of cell growth and BSO effects on cellular GSH levels were determined in this study. A dose dependent effect of BSO on cell growth was observed, but this effect was found not to correlate with BSO effects on cellular GSH levels. Treatment with BSO for 60 h at concentrations of 5 and 10 mM was found to deplete cellular GSH at similar rates and to an undetectable level (below 0.5 nmol/mg protein). However, cessation of growth occured in 10 mM BSO whereas growth continued at better than one half the control rate in 5 mM BSO. The results suggest there may be a distinct threshold level of intracellular G GSH (on the order of or less than 0.5 nmol/mg protein) required for cell growth and for cells to protect themselves from the antiproliferative effects of BSO. At a concentration of 10 mM, BSO inhibited both DNA and protein synthesis and arrested growth of A549 cells throughout rather than at a specific phase of the cell cycle. BSO inhibition of growth was not, as indicated by colony-forming efficiency (CFE) and electron microscopy studies, accompanied by indications of cytotoxic effects. A stimulatory effect of 0.1 mM BSO on the growth of A549 cells was found also.Abbreviations BSO L-buthionine-[S,R]-sulfoximine - GSH Glutathione (reduced form) - GSSG Glutathione disulfide - DTNB 5,5-dithiobis (2-nitrobenzoate) - PBS Phosphate buffered saline - BSA Bovine serum albumin - PI Propidium iodide - CFE Colony-forming efficiency - EM Electron microscopy  相似文献   

4.
Buthionine sulfoximine (BSO) inhibits the synthesis of glutathione (GSH), the major nonprotein sulfhydryl (NPSH) present in most mammalian cells. BSO concentrations from 1 microM to 0.1 mM reduced intracellular GSH at different rates, while BSO greater than or equal to 0.1 mM (i.e., 0.1 to 2.0 mM), resulting in inhibitor-enzyme saturation, depleted GSH to less than 10% of control within 10 hr at about equal rates. BSO exposures used in these experiments were not cytotoxic with the one exception that 2.0 mM BSO/24 hr reduced cell viability to approximately 50%. However, alterations in either the cell doubling time(s) or the cell age density distribution(s) were not observed with the BSO exposures used to determine its radiosensitizing effect. BSO significantly radiosensitized (ER = 1.41 with 0.1 mM BSO/24 hr) hypoxic, but not aerobic, CHO cells when the GSH and NPSH concentrations were reduced to less than 10 and 20% of control, respectively, and maximum radiosensitivity was even achieved with microM concentrations of BSO (ER = 1.38 with 10 microM BSO/24 hr). Furthermore, BSO exposure (0.1 mM BSO/24 hr) also enhanced the radiosensitizing effect of various concentrations of misonidazole on hypoxic CHO cells.  相似文献   

5.
The aim of this study was to examine the effect of ACS14, a hydrogen sulfide (H2S)-releasing derivative of aspirin (Asp), on Asp-induced gastric injury. Gastric hemorrhagic lesions were induced by intragastric administration of Asp (200 mg/kg, suspended in 0.5% carboxymethyl cellulose solutions) in a volume of 1 ml/100 g body weight. ACS14 (1, 5 or 10 mg/kg) was given 30 min before the Asp administration. The total area of gastric erosions, H2S concentration and oxidative stress in gastric tissues were measured three hours after administration of Asp. Treatment with Asp (200 mg/kg), but not ACS14 (430 mg/kg, at equimolar doses to 200 mg/kg Asp), for 3 h significantly increased gastric mucosal injury. The damage caused by Asp was reversed by ACS14 at 1–10 mg/kg in a concentration-dependent manner. ACS14 abrogated Asp-induced upregulation of COX-2 expression, but had no effect on the reduced PGE2 level. ACS14 reversed the decreased H2S concentrations and blood flow in the gastric tissue in Asp-treated rats. Moreover, ACS14 attenuated Asp-suppressed superoxide dismutase-1 (SOD-1) expression and GSH activity, suggesting that ACS14 may stimulate antioxidants in the gastric tissue. ACS14 also obviously inhibited Asp-induced upregulation of protein expression of oxidases including XOD, p47phox and p67phox. In conclusion, ACS14 protects Asp induced gastric mucosal injury by inhibiting oxidative stress in the gastric tissue.  相似文献   

6.
The effect of changes in both the intracellular glutathione (GSH) concentration and the concentration of extracellular reducing equivalents on the aerobic radiosensitization was studied in three cell lines: CHO-10B4, V79, and A549. Intracellular GSH was metabolically depleted after the inhibition of GSH synthesis by buthionine sulfoximine (BSO), while the extracellular environment was controlled through the replacement of growth medium with a thiol-free salt solution and in some experiments by the exogenous addition of either GSH or GSSG. Each of the cell lines examined exhibited an enhanced aerobic radioresponse when the intracellular GSH was extensively depleted (GSH less than 1 nmol GSH/10(6) cells after 1.0 mM BSO/24 h treatment) and the complexity of the extracellular milieu decreased. Although the addition of oxidized glutathione (5 mM GSSG/30 min) to cells prior to irradiation was without effect, much or all of the induced radiosensitivity was overcome by the addition of reduced glutathione (5 mM GSH/15 min). However, the observation that the exogenous GSH addition restores the control radioresponse without increasing the intracellular GSH concentration was entirely unexpected. These results suggest that a number of factors exert an influence on the extent of GSH depletion and determine the extent of aerobic radiosensitization. Furthermore, the interaction of exogenous GSH with--but without penetrating--the cell membrane is sufficient to result in radiorecovery.  相似文献   

7.
The mechanism of cell death caused by cytokine deprivation remains largely unknown. FL5.12 cells (a murine prolymphocytic cell line), following interleukin-3 (IL-3) withdrawal, undergo a decrease in intracellular glutathione (GSH) that precedes the onset of apoptosis. In the present study, the induction of apoptosis following IL-3 withdrawal or GSH depletion with DL-buthionine-[S,R,]-sulfoximine (BSO) was examined. Both conditions caused time-dependent increases in phosphatidylserine externalization, acridine orange and ethidium bromide staining, decreases in mitochondrial membrane potential, processing and activation of caspase-3 and proteolysis of the endogenous caspase substrate poly(adenosine diphosphate ribose)polymerase (PARP). Apoptosis induced by IL-3 deprivation but not BSO also caused lamin B1 cleavage, suggesting activation of caspase-6. Despite a more profound depletion of GSH after BSO than withdrawal of IL-3, the extent of apoptosis was somewhat lower. Benzyloxycarbonyl-Val-Ala-Asp(OMe)fluoromethyl ketone (z-VAD.fmk) blocked this caspase activity and prevented cell death after BSO exposure but not after IL-3 deprivation. Following IL-3 withdrawal, the caspase inhibitors z-VAD.fmk and boc-asp(OMe)fluoromethylketone (boc-asp.fmk) prevented the cleavage and activation of caspase-3, the breakdown of lamin B1 and partially mitigated PARP degradation. However, the externalization of phosphatidylserine, the fall in mitochondrial membrane potential and subsequent apoptotic cell death still occurred. These results suggest that IL-3 withdrawal may mediate cell death by a mechanism independent of both caspase activation and the accompanying loss of GSH.  相似文献   

8.
Hydrogen sulphide (H2S) is one of three gaseous signaling molecules after nitric oxide and carbon monoxide. Various H2S donor compounds have been synthesized to study its physiological function. Among these compounds sodium hydrosulphide (NaHS), a donor of releasing H2S rapidly have shown to be protective in certain neuronal cell line but several in vivo studies have generated conflicting data. Furthermore several slow releasing H2S donors have been shown to have positive effects on cells in culture. The intracellular concentration of H2S and hence its rate of production may be a factor in keeping the balance between its neuroprotective and toxic effects. The present study was undertaken to deduce how a rapid releasing H2S donor (NaHS) as opposed to a slow releasing donor (ADTOH), affect oxidative stress related intracellular components and survival of RGC-5 cells. It was concluded that when RGC-5 cells are exposed to the toxic effects of glutamate in combination with buthionine sulfoxime (Glu/BSO), ADTOH was more efficacious in inhibiting apoptosis, scavenging reactive oxygen species (ROS), stimulation of glutathione (GSH) and gluthathione-S-transferase (GST). Western blot and qPCR analysis showed ADTOH increased the levels of Nrf2, HO-1, PKCα, p-Akt, Bcl-2 and XIAP but caused a decrease of Nfκβ and xCT greater than NaHS. This study is first to compare the efficacy of two H2S donor drugs as potential neuroprotectants and demonstrate that slow regulated release of H2S to cell culture can be more beneficial in inhibiting oxidative stress induced cell death.  相似文献   

9.
Exposure to nanoparticles (NPs) may cause vascular effects including endothelial dysfunction and foam cell formation, with oxidative stress and inflammation as supposed central mechanisms. We investigated oxidative stress, endothelial dysfunction and lipid accumulation caused by nano-sized carbon black (CB) exposure in cultured human umbilical vein endothelial cells (HUVECs), THP-1 (monocytes) and THP-1 derived macrophages (THP-1a). The proliferation of HUVECs or co-cultures of HUVECs and THP-1 cells were unaffected by CB exposure, whereas there was increased cytotoxicity, assessed by the LDH and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects were unaffected by BSO pre-treatment. qRT-PCR showed increased VCAM1 expression, but no change in GCLM and HMOX1 expression in CB-exposed HUVECs. Pre-exposure to CB induced lipid accumulation in THP-1a cells, which was not affected by the presence of the antioxidant N-acetylcysteine. In addition, the concentrations of CB to induce lipid accumulation were lower than the concentrations to promote intracellular ROS production in THP-1a cells. In conclusion, exposure to nano-sized CB induced endothelial dysfunction and foam cell formation, which was not dependent on intracellular ROS production.  相似文献   

10.
The impact of intracellular glutathione depletion on chromosome damage induced by X irradiation under aerobic conditions was investigated in two different cell lines, Ehrlich ascites tumor cells (EATC) and Chinese hamster ovary cells (CHO-K1). Thiol-depleted cell cultures in plateau phase were obtained by prolonged incubation in growth medium containing DL-buthionine-SR-sulfoximine (BSO), a specific inhibitor of gamma-glutamyl-cysteine synthetase. Cells were then assayed using the procedures of G. L. Ellmann (Arch. Biochem. Biophys. 82, 70-77 (1959)), F. Tietze (Anal. Biochem. 27, 502-522 (1969)), and J. Sedlack and R.H. Lindsay (Anal. Biochem. 25, 192-205 (1968)) for non-protein bound SH (NPSH), glutathione (GSH), and total SH (TSH). In both cell lines GSH was reduced to less than 10% of controls at higher BSO concentrations around 1 mM, whereas TSH and NPSH were affected to only 40-60%. In EATC pretreated with up to 1 mM BSO for 72 h, increased levels of spontaneously occurring micronuclei were found. At BSO concentrations above 200 microM, both cell lines showed a potentiation of chromosome lesions scored as micronuclei and induced under aerobic X irradiation when liquid holding recovery in the original nutrient-depleted medium was performed; the extent of chromosome damage eventually reached that which could be obtained by application of beta-arabinofuranosyladenine (beta-araA), known to inhibit DNA repair processes by blocking DNA polymerases. It is therefore suggested that GSH depletion causes impairment of repair of lesions leading to chromosome deletions and subsequently to micronuclei. In contrast to CHO cell cultures, EATC showed a reversion of the potentiation effect as indicated by a decrease in the micronucleus content during prolonged incubation in the presence of BSO in the millimolar range. This effect could not be correlated to the remaining GSH content of less than 10% but may be due to some accumulation of unknown NPSH components. Since addition of L-cysteine to EATC cultures pretreated with BSO decreased the micronucleus content, cysteine/cystine or a related thiol within the NPSH fraction may be involved in the reestablishment of repair. Thus at least in one cell line, a rather complex response to BSO administration indicated that not only GSH but also other thiols may determine the level of chromosome damage after liquid holding recovery.  相似文献   

11.
Hong H  Lu Y  Ji ZN  Liu GQ 《Journal of neurochemistry》2006,98(5):1465-1473
Glutathione (GSH) depletion has been implicated in the pathogenesis of neurological diseases. During GSH depletion, cells of the blood-brain barrier (BBB) are subjected to chronic oxidative stress. In this study, we investigated the effect of such stress, produced with the GSH synthesis inhibitor l-buthionine-(S,R)-sulfoximine (BSO), on expression of P-glycoprotein (Pgp) in primary cultured rat brain microvessel endothelial cells that comprise the blood-brain barrier (BBB). Application of BSO to cell monolayers at concentrations up to 800 microm caused increases in expression of Pgp. Concentrations >or= 400 microm BSO decreased cell viability. Application of 200 microm BSO caused a significant increase in Pgp function activity, as assessed by rhodamine 123 (Rh123) accumulation experiments. At this concentration, BSO produced time-dependent decreases in levels of intracellular GSH and increases in levels of intracellular reactive oxygen species (iROS). The increases were also observed within 48 h following BSO treatment in mdr1a and mdr1b mRNA. Exposure of cells to BSO for 24 h produced maximal effects in the accumulation of iROS, and in expression and function of Pgp. The ROS scavenger N-acetylcysteine prevented ROS generation and attenuated the changes of both expression and activity of Pgp induced by BSO. Therefore, the transport of Pgp substrates may be affected by changing Pgp expression under conditions of chronic oxidative stress induced by GSH depletion.  相似文献   

12.
The hypoxic and euoxic radiation response for Chinese hamster lung and A549 human lung carcinoma cells was obtained under conditions where their nonprotein thiols, consisting primarily of glutathione (GSH), were depleted by different mechanisms. The GSH conjugating reagent diethylmaleate (DEM) was compared to DL-buthionine-S,R-sulfoximine (BSO), an inhibitor of glutathionine biosynthesis. Each reagent depleted cellular GSH to less than 5% of control values. A 2-hr exposure to 0.5 mM DEM or a 4- or 24-hr exposure to BSO at 10 or 1 mM, respectively, depleted cellular GSH to less than 5% of control values. Both agents sensitized cells irradiated under air or hypoxic conditions. When GSH levels are lowered to less than 5% by both agents, hypoxic DEM-treated cells exhibited slightly greater X-ray sensitization than hypoxic BSO-treated cells. The D0's for hypoxic survival curves were as follows: control, 4.87 Gy; DEM, 3.22 Gy; and BSO, 4.30 Gy for the V79 cells and 5.00 Gy versus 4.02 Gy for BSO-treated A549 cells. The D0's for aerobic V79 cells were 1.70 Gy versus 1.13 Gy, DEM, and 1.43 Gy for BSO-treated cells. The D0's for the aerobic A549 were 1.70 and 1.20 for BSO-treated cells. The aerobic and anoxic sensitization of the cells results in the OER's of 2.8 and 3.0 for the DEM- and BSO-treated cells compared to 2.9 for the V79 control A549. BSO-treated cells showed an OER of 3.3 versus 3 for the control. Our results suggest that GSH depletion by either BSO or DEM sensitizes aerobic cells to radiation but does not appreciably alter the OER.  相似文献   

13.
Glutathione (GSH) is the most abundant cellular thiol playing an essential role in preserving a reduced cellular environment. Cellular GSH levels can be efficiently reduced by the GSH biosynthesis inhibitor, L-buthionine sulfoximine (BSO). The aim of our study was to determine the role of GSH in the growth of two C-cluster enteroviruses, poliovirus type 1 (PV1) and coxsackievirus A20 (CAV20). Our results show that the growth of both PV1 and CAV20 is strongly inhibited by BSO and can be partially reversed by the addition of GSH. BSO has no effect on viral protein synthesis or RNA replication but it strikingly reduces the accumulation of 14S pentamers in infected cells. GSH-pull down assays show that GSH directly interacts with capsid precursors and mature virus made in the absence of BSO whereas capsid precursors produced under GSH-depletion do not bind to GSH. In particular, the loss of binding of GSH may debilitate the stability of 14S pentamers, resulting in their failure to assemble into mature virus. Immunofluorescence cell imaging demonstrated that GSH-depletion did not affect the localization of viral capsid proteins to the replication complex. PV1 BSO resistant (BSOr) mutants evolved readily during passaging of the virus in the presence of BSO. Structural analyses revealed that the BSOr mutations, mapping to VP1 and VP3 capsid proteins, are primarily located at protomer/protomer interfaces. BSOr mutations might, in place of GSH, aid the stability of 14S particles that is required for virion maturation. Our observation that BSOr mutants are more heat resistant and need less GSH than wt virus to be protected from heat inactivation suggests that they possess a more stable capsid. We propose that the role of GSH during enterovirus morphogenesis is to stabilize capsid structures by direct interaction with capsid proteins both during and after the formation of mature virus particles.  相似文献   

14.
Glutathione (GSH) depletion to approximately equal to 5% of control for 48 h or longer by 0.05 mM L-buthionine sulfoximine (BSO) led to appreciable toxicity for the 66 murine mammary carcinoma cells growing in vitro [L.A. Dethlefsen et al., Int. J. Radiat. Oncol. Biol. Phys. 12, 1157-1160 (1986)]. Such toxicity in normal, proliferating cells in vivo would be undesirable. Thus the toxic effects after acute GSH depletion to approximately equal to 5% of control by BSO plus dimethylfumarate (DMF) were evaluated in these same 66 cells to determine if this anti-proliferative effect could be minimized. Two hours of 0.025 mM DMF reduced GSH to 45% of control, while 6 h of 0.05 mM BSO reduced it to 16%. However, BSO (6 h) plus DMF (2 h) and BSO (24 h) plus DMF (2 h) reduced GSH to 4 and 2%, respectively. The incorporation (15-min pulses) of radioactive precursors into protein and RNA were unaffected by these treatment protocols. In contrast, cell growth was only modestly affected, but the incorporation of [3H]thymidine into DNA was reduced to 64% of control by the BSO (24 h) plus DMF (2 h) protocol even though it was unaffected by the BSO (6 h) plus DMF (2 h) treatment. The cellular plating efficiencies from both protocols were reduced to approximately equal to 75% of control cells. However, the aerobic radiation response, as measured by cell survival, was not modified at doses of either 4.0 or 8.0 Gy. The growth rates of treated cultures, after drug removal, quickly returned to control rates and the resynthesis of GSH in cells from both protocols was also rapid. The GSH levels after either protocol were slightly above control by 12 h after drug removal, dramatically over control (approximately equal to 200%) by 24 h, and back to normal by 48 h. Thus even a relatively short treatment with BSO and DMF resulting in a GSH depletion to 2-5% of control had a marked effect on DNA synthesis and plating efficiency and a modest effect on cellular growth. One cannot rule out a direct effect of the drugs, but presumably the antiproliferative effects are due to a depletion of nuclear GSH with the subsequent inhibition of the GSH/glutaredoxin-mediated conversion of ribonucleotides to deoxyribonucleotides. However, even after extended treatment, upon drug removal, GSH was rapidly resynthesized and cellular DNA synthesis and growth quickly resumed.  相似文献   

15.
Glutathione (GSH) depletion is widely used to sensitize cells to anticancer treatment inducing the progression of programmed cell death and overcoming chemoresistance. It has been reported that neuroblastoma cells with MYCN amplification are unable to start TRAIL-dependent death and MYCN, in concert with cytotoxic drugs, efficiently induces the mitochondrial pathway of apoptosis through oxidative mechanisms. In this study, we show that GSH loss induced by L-buthionine-S,R-sulfoximine (BSO), an inhibitor of GSH biosynthesis, leads to overproduction of reactive oxygen species (ROS) and triggers apoptosis of MYCN-amplified neuroblastoma cells. BSO susceptibility of SK-N-BE-2C, a representative example of MYCN-amplified cells, has been attributed to stimulation of total SOD activity in the absence of changes in the level and the activity of catalase. Therefore, the unbalanced intracellular redox milieu has been demonstrated to be critical for the progression of neuroblastoma cell death that was efficiently prevented by antioxidants and rottlerin. These results describe a novel pathway of apoptosis dependent on ROS formation and PKC-delta activation and independent of p53, bcl-2, and bax levels; the selective redox modulation of PKC-delta might be suggested as a potential strategy for sensitizing MYCN-amplified cells to therapeutic approaches.  相似文献   

16.
Glutathione (GSH) concentration increases in bovine oocytes during in vitro maturation (IVM). The constitutive amino acids involved in GSH synthesis are glycine (Gly), glutamate (Glu) and cysteine (Cys). The present study was conducted to investigate the effect of the availability of glucose, Cys, Gly and Glu on GSH synthesis during IVM. The effect of the amino acid serine (Ser) on intracellular reduced/oxidized glutathione (GSH/GSSG) content in both oocytes and cumulus cells was also studied. Cumulus-oocyte complexes (COC) of cattle obtained from ovaries collected from an abattoir were matured in synthetic oviduct fluid (SOF) medium containing 8 mg/ml bovine serum albumin-fatty acid-free (BSA-FAF), 10 microg/ml LH, 1 microg/ml porcine FSH (pFSH) and 1 microg/ml 17 beta-estradiol (17beta-E2). GSH/GSSG content was measured using a double-beam spectrophotometer. The COC were cultured in SOF supplemented with 1.5mM or 5.6mM glucose (Exp. 1); with or without Cys+Glu+Gly (Exp. 2); with the omission of one constitutive GSH amino acid (Exp. 3); with 0.6mM Cys or Cys+Ser (Exp. 4). The developmental capacity of oocytes matured in IVM medium supplemented with Cys and the cell number per blastocyst were determined (Exp. 5). The results reported here indicate (1) no differences in the intracellular GSH/GSSG content at any glucose concentrations. Also, cumulus cell number per COC did not differ either before or after IVM (Exp. 1). (2) Glutathione content in oocytes matured in SOF alone were significantly different from oocytes incubated with SOF supplemented with Cys+Glu+Gly (Exp. 2). (3) Addition of Cys to maturation medium, either with or without Gly and Glu supplementation resulted in an increase of GSH/GSSG content. However, when Cys was omitted from the IVM medium intracellular GSH in oocytes or cumulus cells was less but not significantly altered compared to SOF alone (Exp. 3). (4) Glutathione content in both oocytes and cumulus cells was significantly reduced by incubation with 5mM Ser (Exp.4). (5) There was a significant increase in cleavage and blastocyst rates when Cys was added to maturation medium. In contrast, the cleavage, morula and blastocyst rates were significantly different when 5mM Ser was added to maturation media. There was also a significant difference in mean cell number per blastocyst, obtained from oocytes matured with 5mM Ser (Exp. 5). This study provides evidence that optimal embryo development in vitro is partially dependent on the presence of precursor amino acids for intracellular GSH production. Moreover, the availability of Cys might be a critical factor for GSH synthesis during IVM in cattle oocytes. Greater Ser concentration in IVM medium altered "normal" intracellular GSH in both oocytes and cumulus cells with negative consequences for subsequent developmental capacity.  相似文献   

17.
5-(Pentafluorobenzoylamino)fluorescein (PFB-F), a new thiol-reactive molecule was synthesized to improve the detection limits and specificity of the assays for glutathione S-transferase (GST) activity and glutathione (GSH). A rapid assay method to measure GSH concentration or GST activity and the simultaneous analysis of multiple samples is possible because the glutathione adduct, GS-TFB-F, is separated from PFB-F by thin-layer chromatography (TLC) and can be quantitated by a fluorescence scanner. The detection limits for GSH and for GST activity using TLC were found to be as low as 10 pmol/microl and 1 ng/microl using equine liver GST, respectively. Determination of GSH concentration or GST activity in bovine pulmonary artery endothelial (BPAE) cell lysates gave a linear response for samples corresponding to 500-2500 cells. PFB-F could also measure GST activities of GST fusion proteins and prove to be a suitable substrate for determining the activities of human GST isozymes and other sources of mammalian GST. The selectivity of PFB-F with GSH was proven by comparing trace amount of the adducts that formed with cysteine and beta-galactosidase to that formed with GSH. The HPLC profile of a reaction mixture where cell lysate was used in place of purified GST, also shows only two main peaks, corresponding to GS-TFB-F and unreacted PFB-F. The selectivity of PFB-F for GSH was further confirmed by exposing BPAE cells to dl-buthionine-[S,R]-sulfoximine (BSO). Our results of GS-TFB-F determination indicate that 12-, 24-, or 36-h incubations with BSO caused 2-, 6-, or 7.6-fold reductions in GSH levels, respectively.  相似文献   

18.
The primary objective of this study was to determine the sequence of biochemical signaling events that occur after modulation of the cellular redox state in the B cell lymphoma line, PW, with emphasis on the role of mitochondrial signaling. L-Buthionine sulphoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), was used to modulate the cellular redox status. The sequence and role of mitochondrial events and downstream apoptotic signals and mediators was studied. After BSO treatment, there was an early decline in cellular glutathione (GSH), followed by an increase in reactive oxygen species (ROS) production, which induced a variety of apoptotic signals (detectable at different time points) in the absence of any external apoptotic stimuli. The sequence of biochemical events accompanying apoptosis included a 95% decrease in total GSH and a partial (25%) preservation of mitochondrial GSH, without a significant increase in ROS production at 24h. Early activation and nuclear translocation of the nuclear factor kappa B subunit Rel A was observed at approximately 3h after BSO treatment. Cytochrome c release into the cytosol was also seen after 24h of BSO treatment. p53 protein expression was unchanged after redox modulation for up to 72 h, and p21waf1 independent loss of cellular proliferation was observed. Surprisingly, a truncated form of p53 was expressed in a time-dependent manner, beginning at 24h after BSO incubation. Irreversible commitment to apoptosis occurred between 48 and 72 h after BSO treatment when mitochondrial GSH was depleted, and there was an increase in ROS production. Procaspase 3 protein levels showed a time-dependent reduction following incubation with BSO, notably after 48 h, that corresponded with increasing ROS levels. At 96 h, caspase 3 cleavage products were detectable. The pan-caspase inhibitor zVADfmk, partially blocked the induction of apoptosis at 48 h, and was ineffective after 72 h. PW cells could be rescued from apoptosis by removing them from BSO after up to 48, but not 72 h incubation with BSO. Mitochondrial transmembrane potential (DeltaPsi(m)) remained intact in most of the cells during the 72 h observation period, indicating that DeltaPsi(m) dissipation is not an early signal for the induction of redox dependent apoptosis in PW cells. These data suggest that a decrease in GSH alone can act as a potent early activator of apoptotic signaling. Increased ROS production following mitochondrial GSH depletion, represents a crucial event, which irreversibly commits PW cells to apoptosis.  相似文献   

19.
Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an IC50 of more than 50 muM. Low doses of ATO or BSO (1~10 muM) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (DeltaPsi(m)) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.  相似文献   

20.
Raza H  John A 《PloS one》2012,7(4):e36325
We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号