首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Due to the relative small number of bacterial pathogens present in an infected host, exploration of pathogen gene expression in vivo is challenging. This study reports the development of a protocol for quantifying bacterial gene expression in vivo in Actinobacillus pleuropneumoniae using laser capture microdissection and real-time quantitative RT-PCR.  相似文献   

16.
Direct cultivation-independent sequence retrieval of unidentified bacteria from histological tissue sections has been limited by the difficulty of selectively isolating specific bacteria from a complex environment. Here, a new DNA isolation approach is presented for prokaryotic cells. By this method, a potentially pathogenic strain of the genus Brachyspira from formalin-fixed human colonic biopsies were visualized by fluorescence in situ hybridization (FISH) with a 16S rRNA-targeting oligonucleotide probe, followed by laser capture microdissection (LCM) of the targeted cells. Direct 16S rRNA gene PCR was performed from the dissected microcolonies, and the subsequent DNA sequence analysis identified the dissected bacterial cells as belonging to the Brachyspira aalborgi cluster 1. The advantage of this technique is the ability to combine the histological recognition of the specific bacteria within the tissue with molecular analysis of 16S rRNA gene or other genes of interest. This method is widely applicable for the identification of noncultivable bacteria and their gene pool from formalin-fixed paraffin-embedded tissue samples.  相似文献   

17.
Classical in situ hybridization (ISH) with biotinylated probes makes it possible to detect and localize human papillomavirus (HPV) nucleic acid sequences in cytological and histological materials. This method is however of limited value in the detection of a few copies of the virus. Moreover the specificity of such a technique is not always convincing when ISH signals are small and/or of low intensity. Recently, much attention has been focused on the utility of the in vitro polymerase chain reaction (PCR) and especially on PCR-single strand conformation polymorphism (SSCP) to amplify small amounts of viral DNA with accurate hybrid specificity. But the latter method requires nucleic acid extraction and tissue destruction. Thus, correlation between the PCR results and histological findings is not possible. Hence, the aim of our current study was to apply to HeLa cells and cervical formalin-fixed and paraffin-embedded biopsies, a novel procedure of ISH signal amplification, the catalyzed signal amplification (CSA). Such a procedure is based on the deposition of streptavidin-horseradish peroxidase catalyzing the deposition of biotinylated tyramide molecules on the location of the probed target. The biotin accumulation is then detected with streptavidin peroxidase and diaminobenzidine. The results were compared with those obtained by direct and indirect in situ PCR. The catalysed signal amplification successfully increased the sensitivity and efficiency of ISH for the detection of rare sequences in HPV infected cells and histological materials. Such a method was found simpler and faster than in situ PCR and tissue morphology was better preserved.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号