首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Integase interactor 1 (INI1), also known as hSNF5, is a protein that interacts with HIV-1 integrase. We report here that a cytoplasmically localized fragment of INI1 (S6; aa183-294) containing the minimal integrase-interaction domain potently inhibits HIV-1 particle production and replication. Mutations in S6 or integrase that disrupt integrase-INI1 interaction abrogated the inhibitory effect. An integrase-deficient HIV-1 transcomplemented with integrase fused to Vpr was not affected by S6. INI1 was specifically incorporated into virions and was required for efficient HIV-1 particle production. These results indicate that INI1 is required for late events in the viral life cycle, and that ectopic expression of S6 inhibits HIV-1 replication in a transdominant manner via its specific interaction with integrase within the context of Gag-Pol, providing a novel strategy to control HIV-1 replication.  相似文献   

2.
3.
4.
Human immunodeficiency virus type 1 (HIV-1) hardly replicates in Old World monkeys. Recently, a mutant HIV-1 clone, NL-DT5R, in which a small part of gag and the entire vif gene are replaced with SIVmac239-derived ones, was shown to be able to replicate in pigtail monkeys but not in rhesus monkeys (RM). In the present study, we found that a modified monkey-tropic HIV-1 (HIV-1mt), MN4-5S, acquired the ability to replicate efficiently in cynomolgus monkeys as compared with the NL-DT5R, while neither NL-DT5R nor MN4-5S replicated in RM cells. These results suggest that multiple determinants may be involved in the restriction of HIV-1 replication in macaques, depending on the species of macaques. The new HIV-1mt clone will be useful for studying molecular mechanisms by which anti-viral host factors regulate HIV-1 replication in macaques.  相似文献   

5.
Production of the C-X-C chemokines interleukin-8 (IL-8) and growth-regulated oncogene alpha (GRO-alpha) in macrophages is stimulated by exposure to human immunodeficiency virus type 1 (HIV-1). We have demonstrated previously that GRO-alpha then stimulates HIV-1 replication in both T lymphocytes and macrophages. Here we demonstrate that IL-8 also stimulates HIV-1 replication in macrophages and T lymphocytes. We further show that increased levels of IL-8 are present in the lymphoid tissue of patients with AIDS. In addition, we demonstrate that compounds which inhibit the actions of IL-8 and GRO-alpha via their receptors, CXCR1 and CXCR2, also inhibit HIV-1 replication in both T lymphocytes and macrophages, indicating potential therapeutic uses for these compounds in HIV-1 infection and AIDS.  相似文献   

6.
7.
8.
9.
10.
One hallmark of uncontrolled, chronic human immunodeficiency virus type 1 (HIV-1) infection is the absence of strong HIV-1-specific, CD4(+) T-cell-proliferative responses, yet the mechanism underlying this T helper (Th)-cell defect remains controversial. To better understand the impact of HIV-1 replication on Th-cell function, we compared the frequency of CD4(+) Th-cell responses based on production of gamma interferon to lymphoproliferative responses directed against HIV-1 proteins in HIV-1-infected subjects with active in vivo viral replication versus those on suppressed highly active antiretroviral therapy (HAART). No statistically significant differences in the frequencies of cytokine-secreting, HIV-1-specific CD4(+) T cells between the donor groups were found, despite differences in viral load and treatment status. However, HIV-1-specific lymphoproliferative responses were significantly greater in the subjects with HAART suppression than in subjects with active viral replication. Similar levels of HIV-1 RNA were measured in T-cell cultures stimulated with HIV-1 antigens regardless of donor in vivo viral loads, but only HIV-1-specific CD4(+) T cells from subjects with HAART suppression proliferated in vitro, suggesting that HIV-1 replication in vitro does not preclude HIV-1-specific lymphoproliferation. This study demonstrates a discordance between the frequency and proliferative capacity of HIV-1-specific CD4(+) T cells in subjects with ongoing in vivo viral replication and suggests that in vivo HIV-1 replication contributes to the observed defect in HIV-1-specific CD4(+) T-cell proliferation.  相似文献   

11.
12.
The role of plasmacytoid dendritic cells (pDC) in human immunodeficiency virus type 1 (HIV-1) infection and pathogenesis remains unclear. HIV-1 infection in the humanized mouse model leads to persistent HIV-1 infection and immunopathogenesis, including type I interferons (IFN-I) induction, immune-activation and depletion of human leukocytes, including CD4 T cells. We developed a monoclonal antibody that specifically depletes human pDC in all lymphoid organs in humanized mice. When pDC were depleted prior to HIV-1 infection, the induction of IFN-I and interferon-stimulated genes (ISGs) were abolished during acute HIV-1 infection with either a highly pathogenic CCR5/CXCR4-dual tropic HIV-1 or a standard CCR5-tropic HIV-1 isolate. Consistent with the anti-viral role of IFN-I, HIV-1 replication was significantly up-regulated in pDC-depleted mice. Interestingly, the cell death induced by the highly pathogenic HIV-1 isolate was severely reduced in pDC-depleted mice. During chronic HIV-1 infection, depletion of pDC also severely reduced the induction of IFN-I and ISGs, associated with elevated HIV-1 replication. Surprisingly, HIV-1 induced depletion of human immune cells including T cells in lymphoid organs, but not the blood, was reduced in spite of the increased viral replication. The increased cell number in lymphoid organs was associated with a reduced level of HIV-induced cell death in human leukocytes including CD4 T cells. We conclude that pDC play opposing roles in suppressing HIV-1 replication and in promoting HIV-1 induced immunopathogenesis. These findings suggest that pDC-depletion and IFN-I blockade will provide novel strategies for treating those HIV-1 immune non-responsive patients with persistent immune activation despite effective anti-retrovirus treatment.  相似文献   

13.
HIV-1 Gag protein interaction with cyclophilin A (CypA) is critical for viral fitness. Among the amino acid substitutions identified in Gag noncleavage sites in HIV-1 variants resistant to protease inhibitors, H219Q (Gatanaga, H., Suzuki, Y., Tsang, H., Yoshimura, K., Kavlick, M. F., Nagashima, K., Gorelick, R. J., Mardy, S., Tang, C., Summers, M. F., and Mitsuya, H. (2002) J. Biol. Chem. 277, 5952-5961) and H219P substitutions in the viral CypA binding loop confer the greatest replication advantage to HIV-1. These substitutions represent polymorphic amino acid residues. We found that the replication advantage conferred by these substitutions was far greater in CypA-rich MT-2 and H9 cells than in Jurkat cells and peripheral blood mononuclear cells (PBM), both of which contained less CypA. High intracellular CypA content in H9 and MT-2 cells, resulting in excessive CypA levels in virions, limited wild-type HIV-1 (HIV-1(WT)) replication and H219Q introduction into HIV-1 (HIV-1(H219Q)), reduced CypA incorporation of HIV-1, and potentiated viral replication. H219Q introduction also restored the otherwise compromised replication of HIV-1(P222A) in PBM, although the CypA content in HIV-1(H219Q/P222A) was comparable with that in HIV-1(P222A), suggesting that H219Q affected the conformation of the CypA-binding motif, rendering HIV-1 replicative in a low CypA environment. Structural modeling analyses revealed that although hydrogen bonds are lost with H219Q and H219P substitutions, no significant distortion of the CypA binding loop of Gag occurred. The loop conformation of HIV-1(P222A) was found highly distorted, although H219Q introduction to HIV-1 restored the conformation of the loop close to that of HIV-1 (P222A). The present data suggested that the effect of CypA on HIV-1 replicative (WT) ability is bimodal (both high and low CypA content limits HIV-1 replication), that the conformation of the CypA binding region of Gag is important for viral fitness, and that the function of CypA is to maintain the conformation.  相似文献   

14.
Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells.  相似文献   

15.
We established small interfering RNA (siRNA) directed against poly(ADP-ribose) polymerase 1 (PARP-1) that effectively reduces the expression of PARP-1 in two human cell lines. Established siRNA against PARP-1 significantly suppressed human immunodeficiency virus type 1 (HIV-1) replication, as well as the activation of the integrated HIV-1 long terminal repeat promoter. These results indicate that PARP-1 is required for efficient HIV-1 replication in human cells. We propose that PARP-1 may serve as a cellular target for RNA interference-mediated gene silencing to inhibit HIV-1 replication.  相似文献   

16.
17.
18.
High mobility group box protein 1 (HMGB1) is an abundant component of mammalian cells that can be released into extracellular milieu actively or by cells that undergo necrosis. Exposure of inflammatory and endothelial cells to HMGB1 leads to the release of cytokines, including TNF-alpha and IL-6. To evaluate the impact of exogenous HMGB1 on viral replication in HIV-1 infected cells, we studied models of latent and acute infection. Extracellular HMGB1 dose dependently increased HIV-1 replication in the monocytic cells, U1, which is an established model for studying latent HIV-1 infection. Dexamethasone, a known inhibitor of NF-kappaB signaling in U1 cells, inhibited HMGB1-induced stimulation of the viral production. Addition of HMGB1 to primary monocytic cells with active HIV-1 infection elicited the opposite effect, due to suppression of the viral replication. The mechanism of this unexpected finding was explained by an HMGB1-mediated increased release of chemokines (RANTES, MIP-1alpha, and MIP-1beta) that are known to inhibit HIV-1 replication. The stimulatory effect of the HMGB1 was not present when latently infected T-cells (ACH-2) were used as target cells. Our data suggest that extracellular HMGB1 has a dichotomic effect on the HIV-1 infection in monocytes but not in lymphocytes. Both activation of latent HIV-1 infection and inhibition of active replication can thus be seen in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号