首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic stellate cells (HSCs) play an important role in several (patho)physiologic conditions in the liver. In response to chronic injury, HSCs are activated and change from quiescent to myofibroblast-like cells with contractile properties. This shift in phenotype is accompanied by a change in expression of intermediate filament (IF) proteins. HSCs express a broad, but variable spectrum of IF proteins. In muscle, syncoilin was identified as an alpha-dystrobrevin binding protein with sequence homology to IF proteins. We investigated the expression of syncoilin in mouse and human HSCs. Syncoilin expression in isolated and cultured HSCs was studied by qPCR, Western blotting, and fluorescence immunocytochemistry. Syncoilin expression was also evaluated in other primary liver cell types and in in vivo-activated HSCs as well as total liver samples from fibrotic mice and cirrhotic patients. Syncoilin mRNA was present in human and mouse HSCs and was highly expressed in in vitro- and in vivo-activated HSCs. Syncoilin protein was strongly upregulated during in vitro activation of HSCs and undetectable in hepatocytes and liver sinusoidal endothelial cells. Syncoilin mRNA levels were elevated in both CCl4- and common bile duct ligation-treated mice. Syncoilin immunocytochemistry revealed filamentous staining in activated mouse HSCs that partially colocalized with α-smooth muscle actin, β-actin, desmin, and α-tubulin. We show that in the liver, syncoilin is predominantly expressed by activated HSCs and displays very low-expression levels in other liver cell types, making it a good marker of activated HSCs. During in vitro activation of mouse HSCs, syncoilin is able to form filamentous structures or at least to closely interact with existing cellular filaments.  相似文献   

2.
Shao L  Feng W  Lee KJ  Chen BP  Zhou D 《PloS one》2012,7(3):e33499
Hematopoietic stem cells (HSCs) are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism. Maintenance of genomic stability is crucial for the preservation of HSCs, which depends on their efficient repair of DNA damage, particularly DNA double strand breaks (DSBs). Because of the paucity of HSCs and lack of sensitive assays, directly measuring the ability of HSCs to repair DSBs has been difficult. Therefore, we developed a sensitive and quantitative cell free in vitro non-homologous end joining (NHEJ) assay using linearized plasmids as the substrates and quantitative polymerase chain reaction (qPCR) technique. This assay can sensitively detect DSB repair via NHEJ in less than 1 μg 293T cell nuclear proteins or nuclear extracts from about 5,000 to 10,000 human BM CD34(+) hematopoietic cells. Using this assay, we confirmed that human bone marrow HSCs (CD34(+)CD38(-) cells) are less proficient in the repair of DSBs by NHEJ than HPCs (CD34(+)CD38(+) cells). In contrast, mouse quiescent HSCs (Pyronin-Y(low) LKS(+) cells) and cycling HSCs (Pyronin-Y(hi) LKS(+) cells) repaired the damage more efficiently than HPCs (LKS(-) cells). The difference in the abilities of human and mouse HSCs and HPCs to repair DSBs through NHEJ is likely attributed to their differential expression of key NHEJ DNA damage repair genes such as LIG4. These findings suggest that the qPCR-based cell free in vitro NHEJ assay can be used to sensitively measure the ability of human and mouse HSCs to repair DSBs.  相似文献   

3.
Background aimsAlthough recombinant adeno-associated virus serotype 2 (AAV2) vectors have gained attention because of their safety and efficacy in numerous phase I/II clinical trials, their transduction efficiency in hematopoietic stem cells (HSCs) has been reported to be low. Only a few additional AAV serotype vectors have been evaluated, and comparative analyses of their transduction efficiency in HSCs from different species have not been performed.MethodsWe evaluated the transduction efficiency of all available AAV serotype vectors (AAV1 through AAV10) in primary mouse, cynomolgus monkey and human HSCs. The transduction efficiency of the optimized AAV vectors was also evaluated in human HSCs in a murine xenograft model in vivo.ResultsWe observed that although there are only six amino acid differences between AAV1 and AAV6, AAV1, but not AAV6, transduced mouse HSCs well, whereas AAV6, but not AAV1, transduced human HSCs well. None of the 10 serotypes transduced cynomolgus monkey HSCs in vitro. We also evaluated the transduction efficiency of AAV6 vectors containing mutations in surface-exposed tyrosine residues. We observed that tyrosine (Y) to phenylalanine (F) point mutations in residues 445, 705 and 731 led to a significant increase in transgene expression in human HSCs in vitro and in a mouse xenograft model in vivo.ConclusionsThese studies suggest that the tyrosine-mutant AAV6 serotype vectors are the most promising vectors for transducing human HSCs and that it is possible to increase further the transduction efficiency of these vectors for their potential use in HSC-based gene therapy in humans.  相似文献   

4.
Mixed-lineage-leukemia (MLL) fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs) may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2Rγ(-/-) (NOG) mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification). We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia.  相似文献   

5.
Hematopoietic stem cells (HSCs) are known to reside in a bone marrow (BM) niche, which is associated with relatively higher calcium content. HSCs sense and respond to calcium changes. However, how calcium-sensing components modulate HSC function and expansion is largely unknown. We investigated temporal modulation of calcium sensing and Ca2+ homeostasis during ex vivo HSC culture and in vivo. Murine BM-HSCs, human BM, and umbilical cord blood (UCB) mononuclear cells (MNCs) were treated with store-operated calcium entry (SOCE) inhibitors SKF 96365 hydrochloride (abbreviated as SKF) and 2-aminoethoxydiphenyl borate (2-APB). Besides, K+ channel inhibitor TEA chloride (abbreviated as TEA) was used to compare the relationship between calcium-activated potassium channel activities. Seven days of SKF treatment induced mouse and human ex vivo BM-HSC expansion as well as UCB-derived primitive HSC expansion. SKF treatment induced the surface expression of CaSR, CXCR4, and adhesion molecules on human hematopoietic stem and progenitor cells. HSCs expanded with SKF successfully differentiated into blood lineages in recipient animals and demonstrated a higher repopulation capability. Furthermore, modulation of SOCE in the BM-induced HSC content and differentially altered niche-related gene expression profile in vivo. Intriguingly, treatments with SOCE inhibitors SKF and 2-APB boosted the mouse BM mesenchymal stem cell (MSC) and human adipose-derived MSCs proliferation, whereas they did not affect the endothelial cell proliferation. These findings suggest that temporal modulation of calcium sensing is crucial in expansion and maintenance of murine HSCs, human HSCs, and mouse BM-MSCs function.  相似文献   

6.
Activated hepatic stellate cells (HSCs) are primarily responsible for the accumulation of extracellular matrix substances during the development of liver fibrosis. It has been shown that n-3 polyunsaturated fatty acids (PUFAs) can prevent liver fibrosis development. However, the underlying mechanisms of action need further investigation. The objective of this study was to determine the regulatory roles of fatty acids (FAs) on the expression of profibrogenic genes in HSCs with the elucidation of mechanisms. LX-2 cells and primary human and mouse HSCs were treated with palmitic acid, oleic acid, linoleic acid, α-linolenic acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) to determine their effect on profibrogenic gene expression upon the activation by transforming growth factor β1 (TGFβ1). PUFAs significantly suppressed TGFβ1-induced expression of profibrogenic genes in LX-2 and primary human HSCs with n-3 being more potent than n-6 PUFAs. However, PUFAs did not inhibit the phosphorylation and nuclear translocation of SMA- and MAD-related protein in primary human HSCs. Furthermore, PUFAs did not alter the profibrogenic gene expression in primary mouse HSCs. The inhibitory effect of EPA and DHA on TGFβ1-induced profibrogenic gene expression was diminished by peroxisome proliferator-activated receptor gamma (PPARG) knockdown, although chemical inhibition of PPARγ did not elicit a similar result. The results suggest that n-3 PUFAs possess the most potent protective effects against TGFβ1-induced profibrogenic gene expression, which is, at least in part, PPARγ-dependent in HSCs.  相似文献   

7.
Activation of hepatic stellate cells (HSCs) is an integral component of the wound‐healing process in liver injury/inflammation. However, uncontrolled activation of HSCs leads to constant secretion of collagen‐rich extracellular matrix (ECM) proteins, resulting in liver fibrosis. The enhanced ECM synthesis/secretion demands an uninterrupted supply of intracellular energy; however, there is a paucity of data on the bioenergetics, particularly the mitochondrial (mito) metabolism of fibrogenic HSCs. Here, using human and rat HSCs in vitro, we show that the mito‐respiration, mito‐membrane potential (Δψm) and cellular ‘bioenergetic signature’ distinguish fibrogenic HSCs from normal, less‐active HSCs. Ex vivo, HSCs from mouse and rat models of liver fibrosis further confirmed the altered ‘bioenergetic signature’ of fibrogenic HSCs. Importantly, the distinctive elevation in mito‐Δψm sensitized fibrogenic HSCs for selective inhibition by mitotropic doxorubicin while normal, less‐active HSCs and healthy human primary hepatocytes remained minimally affected if not, unaffected. Thus, the increased mito‐Δψm may provide an opportunity to selectively target fibrogenic HSCs in liver fibrosis.  相似文献   

8.
Hematopoietic stem cells (HSCs) can self-renew extensively after transplantation. The conditions supporting their in vitro expansion are still being defined. Retroviral overexpression of the human homeobox B4 (HOXB4) gene in mouse bone marrow cells enables over 40-fold expansion of HSCs in vitro. To circumvent the requirement for retroviral infection, we used recombinant human TAT-HOXB4 protein carrying the protein transduction domain of the HIV transactivating protein (TAT) as a potential growth factor for stem cells. HSCs exposed to TAT-HOXB4 for 4 d expanded by about four- to sixfold and were 8-20 times more numerous than HSCs in control cultures, indicating that HSC expansion induced by TAT-HOXB4 was comparable to that induced by the human HOXB4 retrovirus during a similar period of observation. Our results also show that TAT-HOXB4-expanded HSC populations retain their normal in vivo potential for differentiation and long-term repopulation. It is thus feasible to exploit recombinant HOXB4 protein for rapid and significant ex vivo expansion of normal HSCs.  相似文献   

9.
10.
Chen D  Lewis RL  Kaufman DS 《BioTechniques》2003,35(6):1253-1261
Human embryonic stem (ES) cells provide a unique model and an important resource to analyze early hematopoietic development. Other systems to study mammalian hematopoiesis include mouse ES cells, dissection of timed mouse embryos, or use of human postnatal hematopoietic tissue typically isolated from bone marrow or umbilical cord blood. All these models have particular strengths and weaknesses. The extensive studies on murine hematopoiesis provide a basis for work on the human developmental system. Since there are likely some important species differences, use of human ES cells now provides an optimal means to evaluate basic cellular and molecular mechanisms that regulate the beginning stages of human blood development, prior to derivation of hematopoietic stem cells (HSCs). Eventually, research on human ES cells may provide an alternative source of HSCs and other blood products for hematopoietic cell transplantation or other cellular therapies.  相似文献   

11.
BACKGROUND: Gaucher disease is a lysosomal storage disorder resulting from a deficiency of glucocerebrosidase (GC). Recently, lentivirus vectors have been developed for efficient gene transfer into hematopoietic stem cells (HSCs). A recombinant lentivirus vector was used to evaluate the transduction of the human GC gene into murine bone-marrow-derived HSCs and its expression in their progeny. METHODS: Murine HSCs were transduced with lentivirus vector (lenti-EF-GC; MOI = 10-100). We transplanted female wild-type C57BL/6J mice with genetically modified male HSCs via the tail vein. RESULTS: We show that intravenous transplantation of transduced HSCs has therapeutic potential. Enzyme activity was increased two- to three-fold in various tissues, especially in the hematopoietic system. Numerous transplanted HSCs survived for 6 months and were shown by PCR to contain the provirus genes; the Y chromosome was identified by FISH analysis in the cells of female mouse recipients. CONCLUSIONS: The recombinant lentiviral vector transduces HSCs that are capable of long-term gene expression in vivo. This approach is potentially useful for the treatment of patents with Gaucher disease and other lysosomal storage disorders.  相似文献   

12.
ObjectivesDNA damages pose threats to haematopoietic stem cells (HSC) maintenance and haematopoietic system homeostasis. Quiescent HSCs in adult mouse bone marrow are resistant to DNA damage, while human umbilical cord blood‐derived proliferative HSCs are prone to cell death upon ionizing radiation. Murine embryonic HSCs proliferate in foetal livers and divide symmetrically to generate HSC pool. How murine embryonic HSCs respond to DNA damages is not well‐defined.Materials and methodsMice models with DNA repair molecule Nbs1 or Nbs1/p53 specifically deleted in embryonic HSCs were generated. FACS analysis, in vitro and in vivo HSC differentiation assays, qPCR, immunofluorescence and Western blotting were used to delineate roles of Nbs1‐p53 signaling in HSCs and haematopoietic progenitors.ResultsNbs1 deficiency results in persistent DNA breaks in embryonic HSCs, compromises embryonic HSC development and finally results in mouse perinatal lethality. The persistent DNA breaks in Nbs1 deficient embryonic HSCs render cell cycle arrest, while driving a higher rate of cell death in haematopoietic progenitors. Although Nbs1 deficiency promotes Atm‐Chk2‐p53 axis activation in HSCs and their progenies, ablation of p53 in Nbs1 deficient HSCs accelerates embryonic lethality.ConclusionsOur study discloses that DNA double‐strand repair molecule Nbs1 is essential in embryonic HSC development and haematopoiesis. Persistent DNA damages result in distinct cell fate in HSCs and haematopoietic progenitors. Nbs1 null HSCs tend to be maintained through cell cycle arrest, while Nbs1 null haematopoietic progenitors commit cell death. The discrepancies are mediated possibly by different magnitude of p53 signaling.  相似文献   

13.
The liver lymphocyte population is enriched with natural killer (NK) cells, which play a key role in host defense against viral infection and tumor transformation. Recent evidence from animal models suggests that NK cells also play an important role in inhibiting liver fibrosis by selectively killing early or senescence activated hepatic stellate cells (HSCs) and by producing the anti-fibrotic cytokine IFN-γ. Furthermore, clinical studies have revealed that human NK cells can kill primary human HSCs and that the ability of NK cells from HCV patients to kill HSCs is enhanced and correlates inversely with the stages of liver fibrosis. IFN-α treatment enhances, while other factors (e.g., alcohol, TGF-β) attenuate, the cytotoxicity of NK cells against HSCs, thereby differentially regulating liver fibrogenesis. In addition, the mouse liver lymphocyte population is also enriched for natural killer T (NKT) cells, whereas human liver lymphocytes have a much lower percentage of NKT cells. Many studies suggest that NKT cells promote liver fibrogenesis by producing pro-fibrotic cytokines such as IL-4, IL-13, hedgehog ligands, and osteopontin; however, NKT cells may also attenuate liver fibrosis under certain conditions by killing HSCs and by producing IFN-γ. Finally, the potential for NK and NKT cells to be used as therapeutic targets for anti-fibrotic therapy is discussed. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

14.
15.
ObjectiveLiver fibrosis is part of the non-alcoholic fatty liver disease (NAFLD) spectrum, which currently has no approved pharmacological treatment. In this study, we investigated whether supplementation of nicotinamide riboside (NR), a nicotinamide adenine dinucleotide (NAD+) precursor, can reduce the development of liver fibrosis in a diet-induced mouse model of liver fibrosis.MethodsMale C57BL/6 J mice were fed a low-fat control (LF), a high-fat/high-sucrose/high-cholesterol control (HF) or a HF diet supplemented with NR at 400 mg/kg/day (HF-NR) for 20 weeks. Features of liver fibrosis were assessed by histological and biochemical analyses. Whole-body energy metabolism was also assessed using indirect calorimetry. Primary mouse and human hepatic stellate cells were used to determine the anti-fibrogenic effects of NR in vitro.ResultsNR supplementation significantly reduced body weight of mice only 7 weeks after mice were on the supplementation, but did not attenuate serum alanine aminotransferase levels, liver steatosis, or liver inflammation. However, NR markedly reduced collagen accumulation in the liver. RNA-Seq analysis suggested that the expression of genes involved in NAD+ metabolism is altered in activated hepatic stellate cells (HSCs) compared to quiescent HSCs. NR inhibited the activation of HSCs in primary mouse and human HSCs. Indirect calorimetry showed that NR increased energy expenditure, likely by upregulation of β-oxidation in skeletal muscle and brown adipose tissue.ConclusionNR attenuated HSC activation, leading to reduced liver fibrosis in a diet-induced mouse model of liver fibrosis. The data suggest that NR may be developed as a potential preventative for human liver fibrosis.  相似文献   

16.
The HIV-specific cytotoxic T lymphocyte (CTL) response is a critical component in controlling viral replication in vivo, but ultimately fails in its ability to eradicate the virus. Our intent in these studies is to develop ways to enhance and restore the HIV-specific CTL response to allow long-term viral suppression or viral clearance. In our approach, we sought to genetically manipulate human hematopoietic stem cells (HSCs) such that they differentiate into mature CTL that will kill HIV infected cells. To perform this, we molecularly cloned an HIV-specific T cell receptor (TCR) from CD8+ T cells that specifically targets an epitope of the HIV-1 Gag protein. This TCR was then used to genetically transduce HSCs. These HSCs were then introduced into a humanized mouse containing human fetal liver, fetal thymus, and hematopoietic progenitor cells, and were allowed to differentiate into mature human CD8+ CTL. We found human, HIV-specific CTL in multiple tissues in the mouse. Thus, genetic modification of human HSCs with a cloned TCR allows proper differentiation of the cells to occur in vivo, and these cells migrate to multiple anatomic sites, mimicking what is seen in humans. To determine if the presence of the transgenic, HIV-specific TCR has an effect on suppressing HIV replication, we infected with HIV-1 mice expressing the transgenic HIV-specific TCR and, separately, mice expressing a non-specific control TCR. We observed significant suppression of HIV replication in multiple organs in the mice expressing the HIV-specific TCR as compared to control, indicating that the presence of genetically modified HIV-specific CTL can form a functional antiviral response in vivo. These results strongly suggest that stem cell based gene therapy may be a feasible approach in the treatment of chronic viral infections and provide a foundation towards the development of this type of strategy.  相似文献   

17.
Activated hepatic stellate cells (HSCs) are significant in liver fibrosis. Our past investigations have shown that human umbilical cord mesenchymal stem cells (hucMSCs) and their secreted exosomes (MSC-ex) could alleviate liver fibrosis via restraining HSCs activation. However, the mechanisms underlying the efficacy were not clear. Ferroptosis is a regulatory cell death caused by excessive lipid peroxidation, and it plays a vital role in the occurrence and development of liver fibrosis. In the present study, we aimed to study the proferroptosis effect and mechanism of MSC-ex in HSCs. MSC-ex were collected and purified from human umbilical cord MSCs. Proferroptosis effect of MSC-ex was examined in HSCs line LX-2 and CCl4 induced liver fibrosis in mice. Gene knockdown or overexpression approaches were used to investigate the biofactors in MSC-ex-mediated ferroptosis regulation. Results: MSC-ex could trigger HSCs ferroptosis by promoting ferroptosis-like cell death, ROS formation, mitochondrial dysfunction, Fe2+ release, and lipid peroxidation in human HSCs line LX-2. Glutathione peroxidase 4 (GPX4) is a crucial regulator of ferroptosis. We found that intravenous injection of MSC-ex significantly decreased glutathione peroxidase 4 (GPX4) expression in activated HSCs and collagen deposition in experimental mouse fibrotic livers. Mechanistically, MSC-ex derived BECN1 promoted HSCs ferroptosis by suppressing xCT-driven GPX4 expression. In addition, ferritinophagy and necroptosis might also play a role in MSC-ex-promoted LX-2 cell death. Knockdown of BECN1 in MSC diminished proferroptosis and anti-fibrosis effects of MSC-ex in LX-2 and fibrotic livers. MSC-ex may promote xCT/GPX4 mediated HSCs ferroptosis through the delivery of BECN1 and highlights BECN1 as a potential biofactor for alleviating liver fibrosis.Subject terms: Translational research, Stem-cell research  相似文献   

18.
A previous study has demonstrated that Ganshuang granule (GSG) plays an anti‐fibrotic role partially by deactivation of hepatic stellate cells (HSCs). In HSCs activation, mammalian target of rapamycin (mTOR)‐autophagy plays an important role. We attempted to investigate the role of mTOR‐autophagy in anti‐fibrotic effect of GSG. The cirrhotic mouse model was prepared to demonstrate the anti‐fibrosis effect of GSG. High performance liquid chromatography (HPLC) analyses were used to identify the active component of GSG. The primary mouse HSCs were isolated and naringin was added into activated HSCs to observe its anti‐fibrotic effect. 3‐methyladenine (3‐MA) and Insulin‐like growth factor‐1 (IGF‐1) was added, respectively, into fully activated HSCs to explore the role of autophagy and mTOR. GSG played an anti‐fibrotic role through deactivation of HSCs in cirrhotic mouse model. The concentration of naringin was highest in GSG by HPLC analyses and naringin markedly suppressed HSCs activation in vitro, which suggested that naringin was the main active component of GSG. The deactivation of HSCs caused by naringin was not because of the autophagic activation but mTOR inhibition, which was supported by the following evidence: first, naringin induced autophagic activation, but when autophagy was blocked by 3‐MA, deactivation of HSCs was not attenuated or reversed. Second, naringin inhibited mTOR pathway, meanwhile when mTOR was activated by IGF‐1, deactivation of HSCs was reversed. In conclusion, we have demonstrated naringin in GSG suppressed activation of HSCs for anti‐fibrosis effect by inhibition of mTOR, indicating a potential therapeutic application for liver cirrhosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号