首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shift work has become an integral part of our life with almost 20% of the population being involved in different shift schedules in developed countries. However, the atypical work times, especially the night shifts, are associated with reduced quality and quantity of sleep that leads to increase of sleepiness often culminating in accidents. It has been demonstrated that shift workers’ sleepiness can be improved by a proper scheduling of light exposure and optimizing shifts timing. Here, an integrated physiologically-based model of sleep-wake cycles is used to predict adaptation to shift work in different light conditions and for different shift start times for a schedule of four consecutive days of work. The integrated model combines a model of the ascending arousal system in the brain that controls the sleep-wake switch and a human circadian pacemaker model. To validate the application of the integrated model and demonstrate its utility, its dynamics are adjusted to achieve a fit to published experimental results showing adaptation of night shift workers (n = 8) in conditions of either bright or regular lighting. Further, the model is used to predict the shift workers’ adaptation to the same shift schedule, but for conditions not considered in the experiment. The model demonstrates that the intensity of shift light can be reduced fourfold from that used in the experiment and still produce good adaptation to night work. The model predicts that sleepiness of the workers during night shifts on a protocol with either bright or regular lighting can be significantly improved by starting the shift earlier in the night, e.g.; at 21∶00 instead of 00∶00. Finally, the study predicts that people of the same chronotype, i.e. with identical sleep times in normal conditions, can have drastically different responses to shift work depending on their intrinsic circadian and homeostatic parameters.  相似文献   

2.
Nonphotic entrainment of an overt sleep-wake rhythm and a circadian pacemaker-driving temperature/melatonin rhythm suggests existence of feedback mechanisms in the human circadian system. In this study, the authors constructed a phase dynamics model that consisted of two oscillators driving temperature/melatonin and sleep-wake rhythms, and an additional oscillator generating an overt sleep-wake rhythm. The feedback mechanism was implemented by modifying couplings between the constituent oscillators according to the history of correlations between them. The model successfully simulated the behavior of human circadian rhythms in response to forced rest-activity schedules under free-run situations: the sleep-wake rhythm is reentrained with the circadian pacemaker after release from the schedule, there is a critical period for the schedule to fully entrain the sleep-wake rhythm, and the forced rest-activity schedule can entrain the circadian pacemaker with the aid of exercise. The behavior of human circadian rhythms was reproduced with variations in only a few model parameters. Because conventional models are unable to reproduce the experimental results concerned here, it was suggested that the feedback mechanisms included in this model underlie nonphotic entrainment of human circadian rhythms.  相似文献   

3.
This paper starts by summarizing the development and refinement of the additive three-process model of alertness first published by Folkard and Akerstedt in 1987. It reviews some of the successes that have been achieved by the model in not only predicting variations in subjective alertness on abnormal sleep-wake schedules but also in accounting for objective measures of sleep latency and duration. Nevertheless, predictions derived from the model concerning alertness on different shifts, and over successive night shifts, are difficult to reconcile with published data on accident risk. In light of this, we have examined two large sets of alertness ratings with a view to further refining the model and identifying additional factors that may influence alertness at any given point in time. Our results indicate that, at least for the range of sleep durations and wake-up times commonly found on rotating shift systems, we may assume the phase of the endogenous circadian component of alertness (process C) to be "set" by the time of waking. Such an assumption considerably enhanced the predictive power of the model and yielded remarkably similar phase estimates to those obtained by maximizing the post-hoc fit of the model. We then examined the manner in which obtained ratings differed from predicted values over a complete 8-day cycle of two, 12-h shift systems. This revealed a pronounced "first night compensation effect" that resulted in shift workers rating themselves as progressively more alert than would be predicted over the course of the first night shift. However, this appeared to be achieved only at the cost of lowered ratings on the second night shift. Finally, we were able to identify a "time on shift" effect whereby, with the exception of the first night shift, alertness ratings decreased over the course of each shift before showing a modest "end effect." We conclude that the identification of these additional components offers the possibility that in the future we may be able to predict trends in accident risk on abnormal sleep-wake schedules.  相似文献   

4.
Nonphotic entrainment in humans?   总被引:3,自引:0,他引:3  
Although light is accepted as the dominant zeitgeber for entrainment of the human circadian system, there is evidence that nonphotic stimuli may play a role. This review critically assesses the current evidence in support of nonphotic entrainment in humans. Studies involving manipulations of sleep-wake schedules, exercise, mealtimes, and social stimuli are re-examined, bearing in mind the fact that the human circadian clock is sensitive to very dim light and has a free-running period very close to 24 h. Because of light confounds, the study of totally blind subjects with free-running circadian rhythms represents the ideal model to investigate the effects of nonphotic stimuli on circadian phase and period. Strong support for nonphotic entrainment in humans has already come from the study of a few blind subjects with entrained circadian rhythms. However, in these studies the nonphotic stimulus(i) responsible was not identified. The effect of appropriately timed exercise or exogenous melatonin represents the best proof to date of an effect of nonphotic stimuli on human circadian timing. Phase-response curves for both exercise and melatonin have been constructed. Given the powerful effect of feeding as a circadian zeitgeber in various nonhuman species, studies of meal timing are recommended. In conclusion, the available evidence indicates that it remains worthwhile to continue to study nonphotic effects on human circadian timing to identify treatment strategies for shift workers and transmeridian travelers as well as for the blind and possibly the elderly.  相似文献   

5.
College students usually exhibit an irregular sleep-wake cycle characterized by great phase delays on weekends and short sleep length on weekdays. As the temporal organization of social activities is an important synchronizer of human biological rhythms, we investigated the role played by study's schedules and work on the sleep-wake cycle. Three groups of female college students were investigated: (1) no-job morning group, (2) no-job evening group, (3) job evening group. The volunteers answered a sleep questionnaire in the classroom. The effects of day of the week and group on the sleep schedules and sleep length were analyzed by a two way ANOVA for repeated measures. The three groups showed delays in the wake up time on weekends. No-job evening and morning groups also delayed bedtime, but the job evening group slept at the same time on weekdays as on weekends. Sleep length increased on weekends for morning group and job evening group, whereas the no-job evening group maintained the amount of sleep from weekdays to weekends. This survey showed that the tendency of phase delay on weekends was differently expressed according to study's schedules and work.  相似文献   

6.
College students usually exhibit an irregular sleep-wake cycle characterized by great phase delays on weekends and short sleep length on weekdays. As the temporal organization of social activities is an important synchronizer of human biological rhythms, we investigated the role played by study's schedules and work on the sleep-wake cycle. Three groups of female college students were investigated: (1) no-job morning group, (2) no-job evening group, (3) job evening group. The volunteers answered a sleep questionnaire in the classroom. The effects of day of the week and group on the sleep schedules and sleep length were analyzed by a two way ANOVA for repeated measures. The three groups showed delays in the wake up time on weekends. No-job evening and morning groups also delayed bedtime, but the job evening group slept at the same time on weekdays as on weekends. Sleep length increased on weekends for morning group and job evening group, whereas the no-job evening group maintained the amount of sleep from weekdays to weekends. This survey showed that the tendency of phase delay on weekends was differently expressed according to study's schedules and work.  相似文献   

7.
Effects of forced sleep-wake schedules with and without physical exercise were examined on the human circadian pacemaker under dim light conditions. Subjects spent 15 days in an isolation facility separately without knowing the time of day and followed a forced sleep-wake schedule of a 23 h 40-min period for 12 cycles, and physical exercise was imposed twice per waking period for 2 h each with bicycle- or rowing-type ergometers. As a result, plasma melatonin rhythm was significantly phase advanced with physical exercise, whereas it was not changed without exercise. The difference in phase was already significant 6 days after the start of exercise. The amplitude of melatonin rhythm was not affected. A single pulse of physical exercise in the afternoon or at midnight significantly phase delayed the melatonin rhythms when compared with the prepulse phase, but the amount of phase shift was not different from that observed in the sedentary controls. These findings indicate that physical exercise accelerates phase-advance shifts of the human circadian pacemaker associated with the forced sleep-wake schedule.  相似文献   

8.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean ± SD] age: 39.2 ± 12.5 yrs; mean yrs on shift = 9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6 ± 8.6 yrs; mean years on shift = 8.4) participated. All participants were admitted to the sleep center at 16:00 h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00 h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42 ± 3.25 h, whereas in the SWD group it was 20:42 ± 2.21 h (z = 2.4; p 相似文献   

9.
Mammalian endogenous circadian rhythms are entrained to the environmental day-night cycle by light exposure. Melatonin is involved in this entrainment by signaling the day-night information to the endogenous circadian pacemaker. Furthermore, melatonin is known to affect the circadian rhythm of body temperature directly. A striking property of the endogenous melatonin signal is its synthesis pattern, characterized by long-term elevated melatonin levels throughout the night. In the present study, the influence of prolonged treatment with the melatonin agonist S20098 during the activity phase of free-running rats was examined. This was achieved by giving S20098 in the food. The free-running body temperature and activity rhythms were studied. The present study shows that enhancement of the melatonin signal, using S20098, affected the free-running rhythm by gradual phase advances of the start of the activity phase, consequently causing an increase in length of the activity phase. A well-known feature of circadian rhythms is its time-dependent sensitivity for light. Light pulse exposure of an animal housed under continuous dark conditions can cause a phase shift of the circadian pacemaker. Therefore, in a second experiment, the influence of melatonin receptor stimulation on the sensitivity of the pacemaker to light was examined by giving the melatonin agonist S20098 in the food during 1 day prior to exposure to a 60-min light pulse of 0, 1.5, 15, or 150 lux given at circadian time (CT) 14. S20098 pretreatment caused a diminished lightpulse- induced phase shift when a light pulse of low light intensity (1.5 lux) was given. S20098 treatment via the food was sufficient to exert chronobiotic activity, and S20098 treatment resulting in prolonged overstimulation of melatonin receptors is able to attenuate the effect of light on the circadian timing system. (Chronobiology International, 18(5), 781-799, 2001)  相似文献   

10.
Mammalian endogenous circadian rhythms are entrained to the environmental day-night cycle by light exposure. Melatonin is involved in this entrainment by signaling the day-night information to the endogenous circadian pacemaker. Furthermore, melatonin is known to affect the circadian rhythm of body temperature directly. A striking property of the endogenous melatonin signal is its synthesis pattern, characterized by long-term elevated melatonin levels throughout the night. In the present study, the influence of prolonged treatment with the melatonin agonist S20098 during the activity phase of free-running rats was examined. This was achieved by giving S20098 in the food. The free-running body temperature and activity rhythms were studied. The present study shows that enhancement of the melatonin signal, using S20098, affected the free-running rhythm by gradual phase advances of the start of the activity phase, consequently causing an increase in length of the activity phase. A well-known feature of circadian rhythms is its time-dependent sensitivity for light. Light pulse exposure of an animal housed under continuous dark conditions can cause a phase shift of the circadian pacemaker. Therefore, in a second experiment, the influence of melatonin receptor stimulation on the sensitivity of the pacemaker to light was examined by giving the melatonin agonist S20098 in the food during 1 day prior to exposure to a 60-min light pulse of 0, 1.5, 15, or 150 lux given at circadian time (CT) 14. S20098 pretreatment caused a diminished lightpulse- induced phase shift when a light pulse of low light intensity (1.5 lux) was given. S20098 treatment via the food was sufficient to exert chronobiotic activity, and S20098 treatment resulting in prolonged overstimulation of melatonin receptors is able to attenuate the effect of light on the circadian timing system. (Chronobiology International, 18(5), 781–799, 2001)  相似文献   

11.
Endogenously generated circadian rhythms are synchronized with the environment through phase-resetting actions of light. Starlight and dim moonlight are of insufficient intensity to reset the phase of the clock directly, but recent studies have indicated that dim nocturnal illumination may otherwise substantially alter entrainment to bright lighting regimes. In this article, the authors demonstrate that, compared to total darkness, dim illumination at night (< 0.010 lux) alters the entrainment of male Syrian hamsters to bright-light T cycles, gradually increasing in cycle length (T) from 24 h to 30 h. Only 1 of 18 hamsters exposed to complete darkness at night entrained to cycles of T > 26 h. In the presence of dim nocturnal illumination, however, a majority of hamsters entrained to Ts of 28 h or longer. The presence or absence of a running wheel had only minor effects on entrainment to lengthening light cycles. The results further establish the potent effects of scotopic illumination on circadian entrainment and suggest that naturalistic ambient lighting at night may enhance the plasticity of the circadian pacemaker.  相似文献   

12.
Daily light exposure in morning-type and evening-type individuals   总被引:1,自引:0,他引:1  
Morning-type individuals (M-types) have earlier sleep schedules than do evening types (E-types) and therefore differ in their exposure to the external light-dark cycle. M-types and E-types usually differ in their endogenous circadian phase as well, but whether this is the cause or the consequence of the difference in light exposure remains controversial. In this study, ambulatory monitoring was used to measure 24-h light exposure in M-type and E-type subjects for 7 consecutive days. The circadian phase of each subject was then estimated in the laboratory using the dim-light melatonin onset in saliva (DLMO) and the core body temperature minimum (Tmin). On average, M-types had earlier sleep schedules and earlier circadian phases than E-types. They also showed more minutes of daily bright light exposure (> 1000 lux) than E-types. As expected, the 24-h patterns of light exposure analyzed in relation to clock time indicated that M-types were exposed to more light in the morning than E-types and that the reverse was true in the late evening. However, there was no significant difference when the light profiles were analyzed in relation to circadian phase, suggesting that, on average, the circadian pacemaker of both M-types and E-types was similarly entrained to the light-dark cycle they usually experience. Some M-types and E-types had different sleep schedules but similar circadian phases. These subjects also had identical light profiles in relation to their circadian phase. By contrast, M-types and E-types with very early or very late circadian phases showed large differences in their profiles of light exposure in relation to their circadian phase. This observation suggests that in these individuals, early or late circadian phases are related to relatively short and long circadian periods and that a phase-delaying profile of light exposure in M-types and a phase-advancing profile in E-types are necessary to ensure a stable entrainment to the 24-h day.  相似文献   

13.
The aim of the study was to evaluate the influence of chronotype (morning-type versus evening-type) living in a fixed sleep-wake schedule different from one's preferred sleep schedules on the time course of neurobehavioral performance during controlled extended wakefulness. The authors studied 9 morning-type and 9 evening-type healthy male subjects (21.4 ± 1.9 yrs). Before the experiment, all participants underwent a fixed sleep-wake schedule mimicking a regular working day (bedtime: 23:30 h; wake time: 07:30 h). Then, following two nights in the laboratory, both chronotypes underwent a 36-h constant routine, performing a cognitive test of sustained attention every hour. Core body temperature, salivary melatonin secretion, objective alertness (maintenance of wakefulness test), and subjective sleepiness (visual analog scale) were also assessed. Evening-types expressed a higher level of subjective sleepiness than morning types, whereas their objective levels of alertness were not different. Cognitive performance in the lapse domain remained stable during the normal waking day and then declined during the biological night, with a similar time course for both chronotypes. Evening types maintained optimal alertness (i.e., 10% fastest reaction time) throughout the night, whereas morning types did not. For both chronotypes, the circadian performance profile was correlated with the circadian subjective somnolence profile and was slightly phase-delayed with melatonin secretion. Circadian performance was less correlated with circadian core body temperature. Lapse domain was phase-delayed with body temperature (2-4 h), whereas optimal alertness was slightly phase-delayed with body temperature (1 h). These results indicate evening types living in a fixed sleep-wake schedule mimicking a regular working day (different from their preferred sleep schedules) express higher subjective sleepiness but can maintain the same level of objective alertness during a normal waking day as morning types. Furthermore, evening types were found to maintain optimal alertness throughout their nighttime, whereas morning types could not. The authors suggest that evening-type subjects have a higher voluntary engagement of wake-maintenance mechanisms during extended wakefulness due to adaptation of their sleep-wake schedule to social constraints.  相似文献   

14.
Mathematical models have become vital to the study of many biological processes in humans due to the complexity of the physiological mechanisms underlying these processes and systems. While our current mathematical representation of the human circadian pacemaker has proven useful in many experimental situations, it uses as input only a direct effect of light on the circadian pacemaker. Although light (a photic stimulus) has been shown to be the primary synchronizer of the circadian pacemaker across a number of species, studies in both animals and humans have confirmed the existence of non-photic effects that also contribute to phase shifting and entrainment. We modified our light-based circadian mathematical model to reflect evidence from these studies that the sleep-wake cycle and/or associated behaviors have a non-photic effect on the circadian pacemaker. In our representation, the sleep-wake cycle and its associated behaviors provides a non-photic drive on the circadian pacemaker that acts both independently and concomitantly with light stimuli. Further experiments are required to validate fully our model and to understand the exact effect of the sleep-wake cycle as a non-photic stimulus for the human circadian pacemaker.  相似文献   

15.
Processes involved in the operation of the circadian pacemaker are well characterized; however; little is known about what mechanisms drive the overt diurnal, nocturnal, or crepuscular behavior in a species. In this context, dual‐phasing rodents, such as Octodon degus, emerge as a useful model to decipher these keys. Two main chronotypes, nocturnal and diurnal, have been traditionally described in laboratory‐housed degus based on the percentage of activity displayed by the animals during the scotophase or photophase. However, if one considers also the entrainment phase angle during the first days following a change from LD to DD conditions, a third chronotype (intermediate)—or more properly, a continuous grading of circadian expressions between diurnal and nocturnal chronotype—can be observed. Our experiments suggest the pacemaker of the diurnal animal is entrained to the photophase, and light does not exert a negative masking effect. The pacemaker of the nocturnal degus, on the other hand, is entrained to the scotophase, and light exerts a strong negative masking effect. Finally, the intermediate chronotype is characterized by variable negative masking effect of light overlapping a pacemaker entrained to the photophase. The phase shift inversion from diurnal to nocturnal chronotype is related to the availability of a wheel in the cage, and the effect may be located downstream from the clock. However, body temperature rhythm recordings, less affected by masking effects, point to an involvement of the circadian pacemaker in chronotype differentiation, as transient entrainment cycles, and not an abrupt phase shift, were detected after providing access to the wheel. The diurnality of degus seems to be the result of a variety of mechanisms, which may explain how different processes can lead to similar chronotypes.  相似文献   

16.
Circadian rhythms are regulated by the suprachiasmatic nucleus (SCN) clock, which is the main oscillator and peripheral clock. SCN clock can be entrained by both photic and non-photic stimuli, and an interaction exists between photic and non-photic entrainment. Moreover, peripheral circadian clocks can be entrained not only by scheduled restricted feeding, but also by scheduled exercise. Thus, the entrainment of peripheral circadian clocks may be the result of an interaction between the entrainment caused by feeding and exercise. In this study, we examined the effect of wheel-running exercise on the phase of the peripheral clocks (kidney, liver and submandibular gland) in PER2::LUC mice under various feeding schedules. Phase and waveforms of the peripheral clocks were not affected by voluntary wheel-running exercise. Exercise for a period of 4 h during the early dark period (morning) delayed the peripheral clocks, while exercise for the same duration during the late dark period (evening) advanced the peripheral clocks. The feeding phase was advanced and delayed by evening and morning exercise, respectively, suggesting that the feeding pattern elicited by the scheduled exercise may entrain the peripheral clocks. Exercise did not affect the phase of the peripheral clock under the 1 meal per day schedule. When the phase of the peripheral clocks was advanced by the feeding schedule of 2 or 4 meals per day during light and/or dark periods, wheel-running exercise during the morning period significantly and equally shifted the phase of all organs back to the original positions observed in mice maintained under free-feeding conditions and with no exercise. When the schedule of 2 meals per day during the dark period failed to affect the phase of peripheral clock, morning exercise did not affect the phase. Wheel-running exercise increased the levels of serum corticosterone, and the injection of dexamethasone/corticosterone instead of exercise shifted a phase that had advanced under the feeding schedule of 2 meals per day, back to the normal position. The liver and submandibular glands exhibit higher sensitivity to dexamethasone than the kidneys. In adrenalectomized mice, treadmill-induced normalization of the advanced phase under a feeding schedule of 2 meals per day was not observed. In summary, scheduled exercise-induced phase shifts were weaker compared to scheduled feeding-induced phase shifts. The phase advance caused by the feeding schedule of 2 or 4 meals per day was suppressed by wheel-running, treadmill exercise or dexamethasone/corticosterone injection in the early dark period (morning). Corticosterone release may be involved in exercise-induced phase shift of peripheral clocks. These results suggest that there is an interaction between the phase shifts caused by feeding and exercise schedules in peripheral clocks.  相似文献   

17.
While light is considered the dominant stimulus for entraining (synchronizing) mammalian circadian rhythms to local environmental time, social stimuli are also widely cited as 'zeitgebers' (time-cues). This review critically assesses the evidence for social influences on mammalian circadian rhythms, and possible mechanisms of action. Social stimuli may affect circadian behavioural programmes by regulating the phase and period of circadian clocks (i.e. a zeitgeber action, either direct or by conditioning to photic zeitgebers), by influencing daily patterns of light exposure or modulating light input to the clock, or by associative learning processes that utilize circadian time as a discriminative or conditioned stimulus. There is good evidence that social stimuli can act as zeitgebers. In several species maternal signals are the primary zeitgeber in utero and prior to weaning. Adults of some species can also be phase shifted or entrained by single or periodic social interactions, but these effects are often weak, and appear to be mediated by social stimulation of arousal. There is no strong evidence yet for sensory-specific nonphotic inputs to the clock. The circadian phase-dependence of clock resetting to social stimuli or arousal (the 'nonphotic' phase response curve, PRC), where known, is distinct from that to light and similar in diurnal and nocturnal animals. There is some evidence that induction of arousal can modulate light input to the clock, but no studies yet of whether social stimuli can shift the clock by conditioning to photic cues, or be incorporated into the circadian programme by associative learning. In humans, social zeitgebers appear weak by comparison with light. In temporal isolation or under weak light-dark cycles, humans may ignore social cues and free-run independently, although cases of mutual synchrony among two or more group-housed individuals have been reported. Social cues may affect circadian timing by controlling sleep-wake states, but the phase of entrainment observed to fixed sleep-wake schedules in dim light is consistent with photic mediation (scheduled variations in behavioural state necessarily create daily light-dark cycles unless subjects are housed in constant dark or have no eyes). By contrast, discrete exercise sessions can induce phase shifts consistent with the nonphotic PRC observed in animal studies. The best evidence for social entrainment in humans is from a few totally blind subjects who synchronize to the 24 h day, or to near-24 h sleep-wake schedules under laboratory conditions. However, the critical entraining stimuli have not yet been identified, and there are no reported cases yet of social entrainment in bilaterally enucleated blind subjects. The role of social zeitgebers in mammalian behavioural ecology, their mechanisms of action, and their utility for manipulating circadian rhythms in humans, remains to be more fully elaborated.  相似文献   

18.
《Chronobiology international》2012,29(12):1599-1612
ABSTRACT

Introduction: Epidemiological studies show that shift workers are at increased risk of cardiovascular diseases, metabolic dysfunction, diabetes, and obesity. Previous research has shown no difference in energy intake between night and day shifts only; however, it remains unclear whether other non-night shift patterns are different to night shift.

Objectives: We investigated whether energy intake of night-shift workers differed from other shift patterns using calorimetry, food diary or food recall over 24-hour periods.

Methods: A systematic review was conducted searching CINAHL, MEDLINE, Web of Science, Embase and PsycINFO databases for observational and interventional studies measuring energy intake in real or simulated shift work. Energy intake was extracted to compare night, day, afternoon/evening and rotating shift work cases.

Results: After duplicate removal, we screened 1057 abstracts and 68 full-text articles were assessed for eligibility of which 15 studies met the inclusion criteria. All studies were cross-sectional and case–control designs in shift workers. Risk of bias assessment showed a low to moderate risk of bias in the majority of studies. There was no difference in energy intake between night-shift work and non-night shift patterns including early morning, day and afternoon/evening shifts. Night-shift workers did not favor particular macronutrients in comparison to other shift schedules.

Conclusions: Energy and macronutrient intake were not detectably different in night shift compared to other shift patterns. Shift work patterns were heterogeneous which likely impacted on dietary assessment timings and computation of 24-h energy intake. Future studies should examine shift schedules with precise circadian timing of food consumption to determine if differences exist in energy and macronutrient intake between different shift patterns.  相似文献   

19.
The patterns of light intensity to which humans expose their circadian pacemakers in daily life are very irregular and vary greatly from day to day. The circadian pacemaker can adjust to such irregular exposure patterns by daily phase shifts, such as summarized in a phase response curve. It is demonstrated in this paper on the basis of computer simulations applying actually recorded human light exposure patterns that the pacemaker can substantially improve its accuracy by an additional response to light: For that purpose, it should additionally change its angular velocity (and consequently its period tau) in response to light. Reductions of tau in response to light in the morning and increases of tau in response to light in the evening can lead to an increase in entrained pacemaker accuracy with about 25%. Circadian pacemakers have evolved as accurate internal representations of external time, and investigated diurnal mammals all seem to respond to light by changing the period of their circadian pacemaker (in addition to shifting phase). The authors suggest that also human circadian systems take advantage of this possibility and that their pacemakers respond to light by shifting phase and changing period. As a consequence of this postulated mechanism, the simulations demonstrate that the period of the pacemaker under normally entrained conditions is 24 h. The maximum accuracy corresponds to a day-to-day standard deviation of the time of phase 0 of circa 15 min. This is considerably more accurate than the light signal humans usually perceive.  相似文献   

20.
The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号