首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sprouty (SPRY) proteins modulate receptor-tyrosine kinase signaling and, thereby, regulate cell migration and proliferation. Here, we have examined the role of endogenous human SPRY2 (hSPRY2) in the regulation of cellular apoptosis. Small inhibitory RNA-mediated silencing of hSPRY2 abolished the anti-apoptotic action of serum in adrenal cortex adenocarcinoma (SW13) cells. Silencing of hSPRY2 decreased serum- or epidermal growth factor (EGF)-elicited activation of AKT and ERK1/2 and reduced the levels of EGF receptor. Silencing of hSPRY2 also inhibited serum-induced activation of p90RSK and decreased phosphorylation of pro-apoptotic protein BAD (BCL2-antagonist of cell death) by p90RSK. Inhibiting both the ERK1/2 and AKT pathways abolished the ability of serum to protect against apoptosis, mimicking the effects of silencing hSPRY2. Serum transactivated the EGF receptor (EGFR), and inhibition of the EGFR by a neutralizing antibody attenuated the anti-apoptotic actions of serum. Consistent with the role of EGFR and perhaps other growth factor receptors in the anti-apoptotic actions of serum, the tyrosine kinase binding domain of c-Cbl (Cbl-TKB) protected against down-regulation of the growth factor receptors such as EGFR and preserved the anti-apoptotic actions of serum when hSpry2 was silenced. Additionally, silencing of Spry2 in c-Cbl null cells did not alter the ability of serum to promote cell survival. Moreover, reintroduction of wild type hSPRY2, but not its mutants that do not bind c-Cbl or CIN85 into SW13 cells after endogenous hSPRY2 had been silenced, restored the anti-apoptotic actions of serum. Overall, we conclude that endogenous hSPRY2-mediated regulation of apoptosis requires c-Cbl and is manifested by the ability of hSPRY2 to sequester c-Cbl and thereby augment signaling via growth factor receptors.  相似文献   

3.
We report a mechanism by which the adapter protein Gene 33 (also called RALT and MIG6) regulates epidermal growth factor receptor (EGFR) signaling. We find that Gene 33 inhibits EGFR autophosphorylation and specifically blunts epidermal growth factor (EGF)-induced activation and/or phosphorylation of Ras, ERK, JNK, Akt/PKB, and retinoblastoma protein. The Ack homology domain of Gene 33, which contains the previously identified EGFR binding domain, is both necessary and sufficient for this inhibition of EGFR autophosphorylation. The endogenous Gene 33 polypeptide is induced by EGF, platelet-derived growth factor, serum, and dexamethasone (Dex) in Rat 2 rat fibroblasts. Dex induces Gene 33 expression and inhibits EGFR phosphorylation and EGF signaling. RNA interference-mediated silencing of Gene 33 significantly reverses this effect. Overexpression of Gene 33 completely blocks EGF-induced protein and DNA synthesis in Rat 2 cells, whereas gene 33 RNA interference substantially enhances EGF-induced protein and DNA synthesis in Rat 2 cells. Our results indicate that Gene 33 is a physiological feedback inhibitor of the EGFR, functioning to inhibit EGFR phosphorylation and all events induced by EGFR activation. Our results also indicate a role for Gene 33 in the suppression, by Dex, of EGF signaling pathways. We propose that Gene 33 may function in the cross-talk between EGF signaling and other mitogenic and/or stress signaling pathways.  相似文献   

4.
Getting a first clue about SPRED functions   总被引:1,自引:0,他引:1  
Spreds form a new protein family with an N-terminal Enabled/VASP homology 1 domain (EVH1), a central c-Kit binding domain (KBD) and a C-terminal Sprouty-related domain (SPR). They are able to inhibit the Ras-ERK signalling pathway after various mitogenic stimulations. In mice, Spred proteins are identified as regulators of bone morphogenesis, hematopoietic processes, allergen-induced airway eosinophilia and hyperresponsiveness. They inhibit cell motility and metastasis and have a high potential as tumor markers and suppressors of carcinogenesis. Moreover, in vertebrates, XtSpreds help together with XtSprouty proteins to coordinate gastrulation and mesoderm specification. Here, we give an overview of this new field and summarize the domain functions, binding partners, expression patterns and the cellular localizations, regulations and functions of Spred proteins and try to give perspectives for future scientific directions.  相似文献   

5.
The signalling cascade including Raf, mitogen-activated protein kinase (MAPK) kinase and extracellular-signal-regulated kinase (ERK) is important in many facets of cellular regulation. Raf is activated through both Ras-dependent and Ras-independent mechanisms, but the regulatory mechanisms of Raf activation remain unclear. Two families of membrane-bound molecules, Sprouty and Sprouty-related EVH1-domain-containing protein (Spred) have been identified and characterized as negative regulators of growth-factor-induced ERK activation. But the molecular functions of mammalian Sproutys have not been clarified. Here we show that mammalian Sprouty4 suppresses vascular epithelial growth factor (VEGF)-induced, Ras-independent activation of Raf1 but does not affect epidermal growth factor (EGF)-induced, Ras-dependent activation of Raf1. Sprouty4 binds to Raf1 through its carboxy-terminal cysteine-rich domain, and this binding is necessary for the inhibitory activity of Sprouty4. In addition, Sprouty4 mutants of the amino-terminal region containing the conserved tyrosine residue, which is necessary for suppressing fibroblast growth factor signalling, still inhibit the VEGF-induced ERK pathway. Our results show that receptor tyrosine kinases use distinct pathways for Raf and ERK activation and that Sprouty4 differentially regulates these pathways.  相似文献   

6.
The neurotrophin receptor p75 interacts with the GTPase Ras. Unstimulated it inactivates Ras while ligand binding induces Ras activation. We developed an inhibitory peptide (ip75RBD) which interferes with the binding domain of Ras of the intracellular domain of p75. ip75RBD inhibits the binding of Ras to the receptor in vitro. It is membrane-permeable and inhibits ligand-induced Ras activation via p75 in vivo but does not influence Ras activation by the stimulated receptor tyrosine kinases Trk and the epidermal growth factor receptor EGFR. The activation of the neutral sphingomyelinase by stimulated p75 is slightly delayed but not inhibited by the peptide. p75-mediated neuronal death induced by NGF or aggregated beta-amyloid1–42 is reduced. We conclude that ip75RBD specifically blocks the Ras binding site of p75 and can be used to analyze p75-induced Ras signaling.  相似文献   

7.
In this study we have examined the interaction of CD44 (a major hyaluronan (HA) receptor) with a RhoA-specific guanine nucleotide exchange factor (leukemia-associated RhoGEF (LARG)) in human head and neck squamous carcinoma cells (HNSCC-HSC-3 cell line). Immunoprecipitation and immunoblot analyses indicate that CD44 and the LARG protein are expressed in HSC-3 cells and that these two proteins are physically associated as a complex. HA-CD44 binding induces LARG-specific RhoA signaling and phospholipase C epsilon (PLC epsilon) activity. In particular, the activation of RhoA-PLC epsilon by HA stimulates inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, and the up-regulation of Ca2+/calmodulin-dependent kinase II (CaMKII), leading to phosphorylation of the cytoskeletal protein, filamin. The phosphorylation of filamin reduces its interaction with filamentous actin, promoting tumor cell migration. The CD44-LARG complex also interacts with the EGF receptor (EGFR). Most importantly, the binding of HA to the CD44-LARG-EGFR complex activates the EGFR receptor kinase, which in turn promotes Ras-mediated stimulation of a downstream kinase cascade including the Raf-1 and ERK pathways leading to HNSCC cell growth. Using a recombinant fragment of LARG (the LARG-PDZ domain) and a binding assay, we have determined that the LARG-PDZ domain serves as a direct linker between CD44 and EGFR. Transfection of the HSC-3 cells with LARG-PDZcDNA significantly reduces LARG association with CD44 and EGFR. Overexpression of the LARG-PDZ domain also functions as a dominant-negative mutant (similar to the PLC/Ca2+-calmodulin-dependent kinase II (CaMKII) and EGFR/MAPK inhibitor effects) to block HA/CD44-mediated signaling events (e.g. EGFR kinase activation, Ras/RhoA co-activation, Raf-ERK signaling, PLC epsilon-mediated inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, CaMKII activity, filamin phosphorylation, and filamin-actin binding) and to abrogate tumor cell growth/migration. Taken together, our findings suggest that CD44 interaction with LARG and EGFR plays a pivotal role in Rho/Ras co-activation, PLC epsilon-Ca2+ signaling, and Raf/ERK up-regulation required for CaMKII-mediated cytoskeleton function and in head and neck squamous cell carcinoma progression.  相似文献   

8.
Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation and gene expression. ERK5 is twice the size of ERK1/2, the amino-terminal half contains the kinase domain that shares the homology with ERK1/2 and TEY activation motif, whereas the carboxy-terminal half is unique. In this study, we examined the cross-talk mechanism between G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases, focusing on ERK1/2 and 5. The pretreatment of rat pheochromocytoma cells (PC12) with pertussis toxin (PTX) specifically enhanced epidermal growth factor (EGF)-induced ERK5 phosphorylation. In addition, lysophosphatidic acid (LPA) attenuated the EGF-induced ERK5 phosphorylation in LPA(1) receptor- and G(i/o)-dependent manners. On the other hand, LPA alone activated ERK1/2 via Gbetagamma subunits and Ras and potentiated EGF-induced ERK1/2 phosphorylation at late time points. These results suggest G(i/o) negatively regulates ERK5, while it positively regulates ERK1/2. LPA did not affect cAMP levels after EGF treatment, and the reagents promoting cAMP production such as forskolin and cholera toxin also attenuated the EGF-induced ERK5 phosphorylation, indicating that the inhibitory effect of LPA on ERK5 inhibition via G(i/o) is not due to inhibition of adenylyl cyclase by Galpha(i/o). However, the inhibitory effect of LPA on ERK5 was abolished in PC12 cells stably overexpressing C-terminus of GPCR kinase2 (GRK2), and overexpression of Gbeta(1) and gamma(2) subunits also suppressed ERK5 phosphorylation by EGF. In response to LPA, Gbetagamma subunits interacted with EGF receptor in a time-dependent manner. These results strongly suggest that LPA negatively regulates the EGF-induced ERK5 phosphorylation through Gbetagamma subunits.  相似文献   

9.
The signaling from MARKK/TAO1 to the MAP/microtubule affinity-regulating kinase MARK/Par1 to phosphorylated microtubule associated proteins (MAPs) renders microtubules dynamic and plays a role in neurite outgrowth or polarity development. Because hyperphosphorylation of Tau at MARK target sites is a hallmark of Alzheimer neurodegeneration, we searched for upstream regulators by the yeast two-hybrid approach and identified two new interaction partners of MARKK, the regulatory Sprouty-related protein with EVH-1 domain1 (Spred1) and the testis-specific protein kinase (TESK1). Spred1-MARKK binding has no effect on the activity of MARKK; therefore, it does not change microtubule (MT) stability. Spred1-TESK1 binding causes inhibition of TESK1. Because TESK1 can phosphorylate cofilin and thus stabilizes F-actin stress fibers, the inhibition of TESK1 by Spred1 makes F-actin fibers dynamic. A third element in this interaction triangle is that TESK1 binds to and inhibits MARKK. Thus, in Chinese hamster ovary (CHO) cells the elevation of MARKK results in MT disruption (via activation of MARK/Par1 and phosphorylation of MAPs), but this can be blocked by TESK1. Similarly, enhanced TESK1 activity results in increased stress fibers (via phospho-cofilin), but this can be blocked by elevating Spred1. Thus, the three-way interaction between Spred1, MARKK, and TESK1 represents a pathway that links regulation of both the microtubule- and F-actin cytoskeleton.  相似文献   

10.
The fully executed epidermal growth factor receptor (EGFR)/Ras/MEK/ERK pathway serves a pro-survival role in renal epithelia under moderate oxidative stress. We and others have demonstrated that during severe oxidative stress, however, the activated EGFR is disconnected from ERK activation in cultured renal proximal tubule cells and also in renal proximal tubules after ischemia/reperfusion injury, resulting in necrotic death. Studies have shown that the tyrosine-phosphorylated p46/52 isoforms of the ShcA family of adaptor proteins connect the activated EGFR to activation of Ras and ERK, whereas the p66(shc) isoform can inhibit this p46/52(shc) function. Here, we determined that severe oxidative stress (after a brief period of activation) terminates activation of the Ras/MEK/ERK pathway, which coincides with ERK/JNK-dependent Ser(36) phosphorylation of p66(shc). Isoform-specific knockdown of p66(shc) or mutation of Ser(36) to Ala, but not to Asp, attenuated severe oxidative stress-mediated ERK inhibition and cell death in vitro. Also, severe oxidative stress (unlike ligand stimulation and moderate oxidative stress, both of which support survival) increased binding of p66(shc) to the activated EGFR and Grb2. This binding dissociated the SOS1 adaptor protein from the EGFR-recruited signaling complex, leading to termination of Ras/MEK/ERK activation. Notably, Ser(36) phosphorylation of p66(shc) and its increased binding to the EGFR also occurred in the kidney after ischemia/reperfusion injury in vivo. At the same time, SOS1 binding to the EGFR declined, similar to the in vitro findings. Thus, the mechanism we propose in vitro offers a means to ameliorate oxidative stress-induced cell injury by either inhibiting Ser(36) phosphorylation of p66(shc) or knocking down p66(shc) expression in vivo.  相似文献   

11.
The K-vitamin analog Cpd 5 or [2-(2-mercaptoethanol)-3-methyl-1,4-napthoquinone] is a potent cell growth inhibitor in vitro and in vivo, likely due to arylation of enzymes containing a catalytic cysteine. This results in inhibition of protein tyrosine phosphatase (PTPase) activity with resultant hyperphosphorylation of EGF receptors (EGFR) and ERK1/2 protein kinases, which are downstream to EGFR in the MAPK pathway. We used NR6 fibroblast cells, which lack endogenous EGFR and its variant cells transfected with different EGFR mutants to assess the contribution of the EGFR-mediated signaling pathway to Cpd 5-mediated ERK activation and cell growth inhibition. Cpd 5 treatment resulted in enhanced phosphorylation of EGFR at carboxyl-terminal tyrosines. This phosphorylation and activation of EGFR were found to be necessary neither for growth inhibition nor for the activation of the downstream kinases ERK1/2, since both occurred in EGFR-devoid mutant cells. U0126 and PD 098059, specific inhibitors of MEK1/2, the ERK1/2 kinases, antagonized both cell growth inhibition and ERK1/2 phosphorylation mediated by Cpd5. Cpd 5 was also found to inhibit ERK1/2 phosphatase(s) activity in lysates from all the cells tested, irrespective of their EGFR status. These results show that EGFR-independent ERK1/2 phosphorylation was involved in the mechanism of Cpd5 mediated growth inhibition. This is likely due to the observed antagonism of ERK phosphatase activity. A candidate PTPase was found to be Cdc25A, a recently identified ERK phosphatase.  相似文献   

12.
We showed previously that epithelial growth factor (EGF) receptor (EGFR) signaling is triggered by metallic compounds associated with ambient air particles. Specifically, we demonstrated that As, Zn, and V activated the EGFR tyrosine kinase and the downstream kinases MEK1/2 and ERK1/2. In this study, we examined the role of Ras in EGFR signaling and the nuclear factor-kappaB (NF-kappaB) activation pathway and the possible interaction between these two signaling pathways in a human airway epithelial cell line (BEAS-2B) exposed to As, V, or Zn ions. Each metal significantly increased Ras activity, and this effect was inhibited by the EGFR tyrosine kinase activity inhibitor PD-153035. Adenoviral-mediated overexpression of a dominant-negative mutant form of Ras(N17) significantly blocked MEK1/2 or ERK1/2 phosphorylation in As-, Zn-, or V-exposed BEAS-2B cells but caused little inhibition of V-, Zn- or EGF-induced EGFR tyrosine phosphorylation. This confirmed Ras as an important intermediate effector in EGFR signaling. Interestingly, V, but not As, Zn, or EGF, induced IkappaBalpha serine phosphorylation, IkappaBalpha breakdown, and NF-kappaB DNA binding. Moreover, PD-153035 and overexpression of Ras(N17) each significantly blocked V-induced IkappaBalpha breakdown and NF-kappaB activation, while inhibition of MEK activity with PD-98059 failed to do so. In summary, exposure to As, Zn, and V initiated EGFR signaling and Ras-dependent activation of MEK1/2 and ERK1/2, but only V induced Ras-dependent NF-kappaB nuclear translocation. EGFR signaling appears to cross talk with NF-kappaB signaling at the level of Ras, but additional signals appear necessary for NF-kappaB activation. Together, these data suggest that, in V-treated BEAS-2B cells, Ras-dependent signaling is essential, but not sufficient, for activation of NF-kappaB.  相似文献   

13.
14.
We have examined the ability of epidermal growth factor (EGF)-stimulated ERK activation to regulate Grb2-associated binder-1 (Gab1)/phosphatidylinositol 3-kinase (PI3K) interactions. Inhibiting ERK activation with the MEK inhibitor U0126 increased the EGF-stimulated association of Gab1 with either full-length glutathione S-transferase-p85 or the p85 C-terminal Src homology 2 (SH2) domain, a result reproduced by co-immunoprecipitation of the native proteins from intact cells. This increased association of Gab1 and the PI3K correlates with an increase in PI3K activity and greater phosphorylation of Akt. This result is in direct contrast to what we have previously reported following HGF stimulation where MEK inhibition decreased the HGF-stimulated association of Gab1 and p85. In support of this divergent effect of ERK on Gab1/PI3K association following HGF and EGF stimulation, U0126 decreased the HGF-stimulated association of p85 and the Gab1 c-Met binding domain but did not alter the EGF-stimulated association of p85 and the c-Met binding domain. An examination of the mechanism of this effect revealed that the treatment of cells with EGF + U0126 increased the tyrosine phosphorylation of Gab1 as well as its association with another SH2-containing protein, SHP2. Furthermore, overexpression of a catalytically inactive form of SHP2 or pretreatment with pervanadate markedly increased EGF-stimulated Gab1 tyrosine phosphorylation. These experiments demonstrate that EGF and HGF-mediated ERK activation result in divergent effects on Gab1/PI3K signaling. HGF-stimulated ERK activation increases the Gab1/PI3K association, whereas EGF-stimulated ERK activation results in a decrease in the tyrosine phosphorylation of Gab1 and a decreased association with the PI3K. SHP2 is shown to associate with and dephosphorylate Gab1, suggesting that EGF-stimulated ERK might act through the regulation of SHP2.  相似文献   

15.
Guanine nucleotide exchange factors (GEFs) have been implicated in growth factor-induced neuronal differentiation through the activation of small GTPases. Although phosphorylation of these GEFs is considered an activation mechanism, little is known about the upstream of PAK-interacting exchange factor (PIX), a member of the Dbl family of GEFs. We report here that phosphorylation of p85 betaPIX/Cool/p85SPR is mediated via the Ras/ERK/PAK2 pathway. To understand the role of p85 betaPIX in basic fibroblast growth factor (bFGF)-induced neurite outgrowth, we established PC12 cell lines that overexpress the fibroblast growth factor receptor-1 in a tetracycline-inducible manner. Treatment with bFGF induces the phosphorylation of p85 betaPIX, as determined by metabolic labeling and mobility shift upon gel electrophoresis. Interestingly, phosphorylation of p85 betaPIX is inhibited by PD98059, a specific MEK inhibitor, suggesting the involvement of the ERK cascade. PAK2, a major PAK isoform in PC12 cells as well as a binding partner of p85 betaPIX, also functions upstream of p85 betaPIX phosphorylation. Surprisingly, PAK2 directly binds to ERK, and its activation is dependent on ERK. p85 betaPIX specifically localizes to the lamellipodia at neuronal growth cones in response to bFGF. A mutant form of p85 betaPIX (S525A/T526A), in which the major phosphorylation sites are replaced by alanine, shows significant defect in targeting. Moreover, expression of the mutant p85 betaPIX efficiently blocks PC12 cell neurite outgrowth. Our study defines a novel signaling pathway for bFGF-induced neurite outgrowth that involves activation of the PAK2-p85 betaPIX complex via the ERK cascade and subsequent translocation of this complex.  相似文献   

16.
Differentiation induction is currently considered as an alternative strategy for treating chronic myelogenous leukemia (CML). Our previous work has demonstrated that Sprouty-related EVH1 domainprotein2 (Spred2) was involved in imatinib mediated cytotoxicity in CML cells. However, its roles in growth and lineage differentiation of CML cells remain unknown. In this study, we found that CML CD34+ cells expressed lower level of Spred2 compared with normal hematopoietic progenitor cells, and adenovirus mediated restoration of Spred2 promoted the erythroid differentiation of CML cells. Imatinib could induce Spred2 expression and enhance erythroid differentiation in K562 cells. However, the imatinib induced erythroid differentiation could be blocked by Spred2 silence using lentiviral vector PLKO.1-shSpred2. Spred2 interference activated phosphorylated-ERK (p-ERK) and inhibited erythroid differentiation, while ERK inhibitor, PD98059, could restore the erythroid differentiation, suggesting Spred2 regulated the erythroid differentiation partly through ERK signaling. Furthermore, Spred2 interference partly restored p-ERK level leading to inhibition of erythroid differentiation in imatinib treated K562 cells. In conclusion, Spred2 was involved in erythroid differentiation of CML cells and participated in imatinib induced erythroid differentiation partly through ERK signaling.  相似文献   

17.
Cholecystokinin (CCK) and related peptides are potent growth factors in the gastrointestinal tract and may be important for human cancer. CCK exerts its growth modulatory effects through G(q)-coupled receptors (CCK(A) and CCK(B)) and activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In the present study, we investigated the different mechanisms participating in CCK-induced activation of ERK1/2 in pancreatic AR42J cells expressing both CCK(A) and CCK(B). CCK activated ERK1/2 and Raf-1 to a similar extent as epidermal growth factor (EGF). Inhibition of EGF receptor (EGFR) tyrosine kinase or expression of dominant-negative Ras reduced CCK-induced ERK1/2 activation, indicating participation of the EGFR and Ras in CCK-induced ERK1/2 activation. However, compared with EGF, CCK caused only small increases in tyrosine phosphorylation of the EGFR and Shc, Shc-Grb2 complex formation, and Ras activation. Signal amplification between Ras and Raf in a CCK-induced ERK cascade appears to be mediated by activation of protein kinase Cepsilon (PKCepsilon), because 1) down-modulation of phorbol ester-sensitive PKCs inhibited CCK-induced activation of Ras, Raf, and ERK1/2 without influencing Shc-Grb2 complex formation; 2) PKCepsilon, but not PKCalpha or PKCdelta, was detectable in Raf-1 immunoprecipitates, although CCK activated all three PKC isoenzymes. In addition, the present study provides evidence that the Src family tyrosine kinase Yes is activated by CCK and mediates CCK-induced tyrosine phosphorylation of Shc. Furthermore, we show that CCK-induced activation of the EGFR and Yes is achieved through the CCK(B) receptor. Together, our data show that different signals emanating from the CCK receptors mediate ERK1/2 activation; activation of Yes and the EGFR mediate Shc-Grb2 recruitment, and activation of PKC, most likely PKCepsilon, augments CCK-stimulated ERK1/2 activation at the Ras/Raf level.  相似文献   

18.
The paradigm for activation of Ras and extracellular signal-regulated kinase (ERK)/mitogen-activated protein (MAP) kinase by extracellular stimuli via tyrosine kinases, Shc, Grb2, and Sos does not encompass an obvious role for phosphoinositide (PI) 3-kinase, and yet inhibitors of this lipid kinase family have been shown to block the ERK/MAP kinase signalling pathway under certain circumstances. Here we show that in COS cells activation of both endogenous ERK2 and Ras by low, but not high, concentrations of epidermal growth factor (EGF) is suppressed by PI 3-kinase inhibitors; since Ras activation is less susceptible than ERK2 activation, PI 3-kinase-sensitive events may occur both upstream of Ras and between Ras and ERK2. However, strong elevation of PI 3-kinase lipid product levels by expression of membrane-targeted p110alpha is by itself never sufficient to activate Ras or ERK2. PI 3-kinase inhibition does not affect EGF-induced receptor autophosphorylation or adapter protein phosphorylation or complex formation. The concentrations of EGF for which PI 3-kinase inhibitors block Ras activation induce formation of Shc-Grb2 complexes but not detectable EGF receptor phosphorylation and do not activate PI 3-kinase. The activation of Ras by low, but mitogenic, concentrations of EGF is therefore dependent on basal, rather than stimulated, PI 3-kinase activity; the inhibitory effects of LY294002 and wortmannin are due to their ability to reduce the activity of PI 3-kinase to below the level in a quiescent cell and reflect a permissive rather than an upstream regulatory role for PI 3-kinase in Ras activation in this system.  相似文献   

19.
《Journal of molecular biology》2019,431(19):3889-3899
Neurofibromatosis type I (NF1) and Legius syndrome are rare inherited disorders that share diagnostic symptoms including dermal abnormalities like axillary and inguinal freckling and café au lait spots. In addition, patients suffering from NF1 have a demanding risk for the development of severe tumors of the peripheral and central nervous system among other NF1-specific symptoms. NF1 and Legius syndrome are caused by alterations in the NF1 and SPRED1 genes encoding the Ras inhibitors neurofibromin and Spred1 (sprouty related EVH1 domain-containing protein), respectively. Neurofibromin functions as a Ras-specific GTPase-activating protein (Ras-GAP), and Spred1 enhances Ras inactivation by recruiting neurofibromin from the cytosol to membrane-anchored Ras. In a previous study, we mapped the Spred binding site to the GAP-related domain of neurofibromin (NF1-GAP) and identified the GAPex subdomain as critical for Spred1 binding. Here, we characterize the binding site of these proteins in more detail focusing on a mutant Spred1 variant carrying a pathogenic missense mutation (threonine 102 to arginine). Introduction of this mutation, which locates at the N-terminal EVH1 domain of Spred1, weakens the interaction with neurofibromin by about 3 orders of magnitude without perturbing the protein fold, and the binding site of NF1-GAP on the mutant Spred1(EVH1) variant can be identified by NMR spectroscopy. Taken together, our data provide structural insight into the interaction of Spred1 and neurofibromin and characterize the structural or functional consequence of selected patient-derived mutations associated with Legius syndrome.  相似文献   

20.
We have reported on Spred-1 and Spred-2, which inhibit MAP kinase activation by interacting with c-kit and ras/raf. Here, we report the cloning of a third member in this family, Spred-3. Spred-3 is expressed exclusively in the brain and its gene locates in chromosome 19q13.13 in human. Like Spred-1 and -2, Spred-3 contains an EVH1 domain in the N-terminus and a Sprouty-related cysteine-rich region (SPR domain) in the C-terminus that is necessary for membrane localization. However, Spred-3 does not possess a functional c-kit binding domain (KBD), since the critical amino acid Arg residue in this region was replaced with Gly in Spred-3. Although Spred-3 suppressed growth factor-induced MAP kinase (Erk) activation, inhibitory activity of Spred-3 was lower than that of Spred-1 or Spred-2. By the analysis of chimeric molecules between Spred-3 and Spred-1, we found that the SPR domain, rather than KBD, is responsible for efficient Erk suppression. The finding of Spred-3 revealed the presence of a novel family of regulators for the Ras/MAP kinase pathway, each member of which may have different specificities for extracellular signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号