首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly active antiretroviral therapy (HAART) suppresses human immunodeficiency virus (HIV) replication to undetectable levels but cannot fully eradicate the virus because a small reservoir of CD4+ T cells remains latently infected. Since HIV efficiently infects only activated CD4+ T cells and since latent HIV primarily resides in resting CD4+ T cells, it is generally assumed that latency is established when a productively infected cell recycles to a resting state, trapping the virus in a latent state. In this study, we use a dual reporter virus—HIV Duo-Fluo I, which identifies latently infected cells immediately after infection—to investigate how T cell activation affects the estab-lishment of HIV latency. We show that HIV latency can arise from the direct infection of both resting and activated CD4+ T cells. Importantly, returning productively infected cells to a resting state is not associated with a significant silencing of the integrated HIV. We further show that resting CD4+ T cells from human lymphoid tissue (tonsil, spleen) show increased latency after infection when compared to peripheral blood. Our findings raise significant questions regarding the most commonly accepted model for the establishment of latent HIV and suggest that infection of both resting and activated primary CD4+ T cells produce latency.  相似文献   

2.
Highly active antiretroviral therapy (HAART) is able to suppress human immunodeficiency virus type 1 (HIV-1) to undetectable levels in the majority of patients, but eradication has not been achieved because latent viral reservoirs persist, particularly in resting CD4+ T lymphocytes. It is generally understood that HIV-1 does not efficiently infect resting CD4+ T cells, and latent infection in those cells may arise when infected CD4+ T lymphoblasts return to resting state. In this study, we found that stimulation by endothelial cells can render resting CD4+ T cells permissible for direct HIV infection, including both productive and latent infection. These stimulated T cells remain largely phenotypically unactivated and show a lower death rate than activated T cells, which promotes the survival of infected cells. The stimulation by endothelial cells does not involve interleukin 7 (IL-7), IL-15, CCL19, or CCL21. Endothelial cells line the lymphatic vessels in the lymphoid tissues and have frequent interactions with T cells in vivo. Our study proposes a new mechanism for infection of resting CD4+ T cells in vivo and a new mechanism for latent infection in resting CD4+ T cells.  相似文献   

3.
Latently infected resting CD4+ T cells are a major barrier to HIV cure. Understanding how latency is established, maintained and reversed is critical to identifying novel strategies to eliminate latently infected cells. We demonstrate here that co-culture of resting CD4+ T cells and syngeneic myeloid dendritic cells (mDC) can dramatically increase the frequency of HIV DNA integration and latent HIV infection in non-proliferating memory, but not naïve, CD4+ T cells. Latency was eliminated when cell-to-cell contact was prevented in the mDC-T cell co-cultures and reduced when clustering was minimised in the mDC-T cell co-cultures. Supernatants from infected mDC-T cell co-cultures did not facilitate the establishment of latency, consistent with cell-cell contact and not a soluble factor being critical for mediating latent infection of resting CD4+ T cells. Gene expression in non-proliferating CD4+ T cells, enriched for latent infection, showed significant changes in the expression of genes involved in cellular activation and interferon regulated pathways, including the down-regulation of genes controlling both NF-κB and cell cycle. We conclude that mDC play a key role in the establishment of HIV latency in resting memory CD4+ T cells, which is predominantly mediated through signalling during DC-T cell contact.  相似文献   

4.
5.
Despite the advent of effective antiretroviral therapy (ART), human immunodeficiency virus (HIV) continues to pose major challenges, with extensive pathogenesis during acute and chronic infection prior to ART initiation and continued persistence in a reservoir of infected CD4 T cells during long-term ART. CD101 has recently been characterized to play an important role in CD4 Treg potency. Using the simian immunodeficiency virus (SIV) model of HIV infection in rhesus macaques, we characterized the role and kinetics of CD101+ CD4 T cells in longitudinal SIV infection. Phenotypic analyses and single-cell RNAseq profiling revealed that CD101 marked CD4 Tregs with high immunosuppressive potential, distinct from CD101- Tregs, and these cells also were ideal target cells for HIV/SIV infection, with higher expression of CCR5 and α4β7 in the gut mucosa. Notably, during acute SIV infection, CD101+ CD4 T cells were preferentially depleted across all CD4 subsets when compared with their CD101- counterpart, with a pronounced reduction within the Treg compartment, as well as significant depletion in mucosal tissue. Depletion of CD101+ CD4 was associated with increased viral burden in plasma and gut and elevated levels of inflammatory cytokines. While restored during long-term ART, the reconstituted CD101+ CD4 T cells display a phenotypic profile with high expression of inhibitory receptors (including PD-1 and CTLA-4), immunsuppressive cytokine production, and high levels of Ki-67, consistent with potential for homeostatic proliferation. Both the depletion of CD101+ cells and phenotypic profile of these cells found in the SIV model were confirmed in people with HIV on ART. Overall, these data suggest an important role for CD101-expressing CD4 T cells at all stages of HIV/SIV infection and a potential rationale for targeting CD101 to limit HIV pathogenesis and persistence, particularly at mucosal sites.  相似文献   

6.
Cytotoxic T cells play a critical role in the control of HIV and the progression of infected individuals to AIDS. 2B4 (CD244) is a member of the SLAM family of receptors that regulate lymphocyte development and function. The expression of 2B4 on CD8+ T cells was shown to increase during AIDS disease progression. However, the functional role of 2B4+ CD8+ T cells against HIV infection is not known. Here, we have examined the functional role of 2B4+ CD8+ T cells during and after stimulation with HLA B14 or B27 restricted HIV epitopes. Interestingly, IFN-γ secretion and cytotoxic activity of 2B4+ CD8+ T cells stimulated with HIV peptides were significantly decreased when compared to influenza peptide stimulated 2B4+ CD8+ T cells. The expression of the signaling adaptor molecule SAP was downregulated in 2B4+ CD8+ T cells upon HIV peptide stimulation. These results suggest that 2B4+ CD8+ T cells play an inhibitory role against constrained HIV epitopes underlying the inability to control the virus during disease progression.  相似文献   

7.
8.
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.  相似文献   

9.
GBV-C infection is associated with prolonged survival and with reduced T cell activation in HIV-infected subjects not receiving combination antiretroviral therapy (cART). The relationship between GBV-C and T cell activation in HIV-infected subjects was examined. HIV-infected subjects on cART with non-detectable HIV viral load (VL) or cART naïve subjects were studied. GBV-C VL and HIV VL were determined. Cell surface markers of activation (CD38+/HLA-DR+), proliferation (Ki-67+), and HIV entry co-receptor expression (CCR5+ and CXCR4+) on total CD4+ and CD8+ T cells, and on naïve, central memory (CM), effector memory (EM), and effector CD4+ and CD8+ subpopulations were measured by flow cytometry. In subjects with suppressed HIV VL, GBV-C was consistently associated with reduced activation in naïve, CM, EM, and effector CD4+ cells. GBV-C was associated with reduced CD4+ and CD8+ T cell surface expression of activation and proliferation markers, independent of HIV VL classification. GBV-C was also associated with higher proportions of naïve CD4+ and CD8+ T cells, and with lower proportions of EM CD4+ and CD8+ T cells. In conclusion, GBV-C infection was associated with reduced activation of CD4+ and CD8+ T cells in both HIV viremic and HIV RNA suppressed patients. Those with GBV-C infection demonstrated an increased proportion of naive T cells and a reduction in T cell activation and proliferation independent of HIV VL classification, including those with suppressed HIV VL on cART. Since HIV pathogenesis is thought to be accelerated by T cell activation, these results may contribute to prolonged survival among HIV infected individuals co-infected with GBV-C. Furthermore, since cART therapy does not reduce T cell activation to levels seen in HIV-uninfected people, GBV-C infection may be beneficial for HIV-related diseases in those effectively treated with anti-HIV therapy.  相似文献   

10.
HIV replication follows a well-defined pattern during the acute phase of the infection in humans. After reaching a peak during the first few weeks after infection, viral replication resolves to a set-point thereafter. There are still uncertainties regarding the contribution of CD8+ T cells in establishing this set-point. An alternative explanation, supported by in silico modeling, would imply that viral replication is limited by the number of available targets for infection, i.e. CD4+CCR5+ T cells. Here, we used NOD.SCID.gc-/- mice bearing human CD4+CCR5+ and CD8+ T cells derived from CD34+ progenitors to investigate the relative contribution of both in viral control after the peak. Using low dose of a CCR5-tropic HIV virus, we observed an increase in viral replication followed by “spontaneous” resolution of the peak, similar to humans. To rule out any possible role for CD8+ T cells in viral control, we infected mice in which CD8+ T cells had been removed by a depleting antibody. Globally, viral replication was not affected by the absence of CD8+ T cells. Strikingly, resolution of the viral peak was equally observed in mice with or without CD8+ T cells, showing that CD8+ T cells were not involved in viral control in the early phase of the infection. In contrast, a marked and specific loss of CCR5-expressing CD4+ T cells was observed in the spleen and in the bone marrow, but not in the blood, of infected animals. Our results strongly suggest that viral replication during the acute phase of the infection in humanized mice is mainly constrained by the number of available targets in lymphoid tissues rather than by CD8+ T cells.  相似文献   

11.
Human herpesvirus‐6 (HHV‐6) infection normally persists for the lifetime of the host and may reactivate with immunosuppression. The mechanism behind HHV‐6 latent infection is still not fully understood. In this study, we observed that decreased proliferation of CD4+ T cells and PBMCs but not CD8+ T cells from HHV‐6‐infected individuals was stimulated with HHV‐6‐infected cell lysates. Moreover, HHV‐6‐stimulated CD4+ T cells from HHV‐6‐infected individuals have suppressive activity on naïve CD4+ T and CD8+ T cells from HHV‐6‐uninfected individuals. However, no increased proportion of CD4+ CD25+ Treg cells from HHV‐6‐infected individuals contributed to the suppressive activity of the HHV‐6‐stimulated CD4+ T cells from HHV‐6‐infected individuals. Transwell experiments, ELISA and anti‐IL‐10 antibody blocking experiment demonstrated that IL‐10 may be the suppressive cytokine required for suppressive activity of CD4+ T cells from HHV‐6‐infected individuals. Results of intracellular interleukin (IL)‐10 and IL‐4 further implicated the HHV‐6‐speciflc IL‐10‐producing CD4+ T cells in the suppressive activity of CD4+ T cells from HHV‐6‐infected individuals. Results of intracellular interferon (IFN)‐γ demonstrated a decreased frequency of HHV‐6‐speciflc IFN‐γ‐producing CD4+ T, but not CD8+ T cells in HHV‐6‐infected individuals, indicating that it was the CD4+ Th1 responses in HHV‐6‐infected individuals that were selectively impaired. Our findings indicated that HHV‐6‐specific IL‐10‐producing CD4+ T cells from HHV‐6‐infected individuals possess T regulatory type 1 cell activity: immunosuppression, high levels of IL‐10 production, with a few cells expressing IFN‐γ, but none expressing IL‐4. These cells may play an important role in latent HHV‐6 infection.  相似文献   

12.
Human T-cell lymphotropic virus type I (HTLV-I) infection in humans causes a chronic infection of CD4+ T cells, and is associated with various disease outcomes, among them with the development of adult T-cell leukemia (ATL). The T-cell dynamics after HTLV-I infection can be described in a mathematical model with coupled differential equations. The infection process is modeled assuming cell-to-cell infection of CD4+ T cells. The model allows for CD4+ T cell subsets of susceptible, latently infected and actively infected cells as well as for leukemia cells. Latently infected T cells may harbor the virus for several years until they become activated and able to infect susceptible T cells. Uncontrolled proliferation of CD4+ T cells with monoclonal DNA-integration of HTLV-I results in the development of ATL. The model describes basic features that characterize HTLV-I infection; the chronic infection of CD4+ T cells, the increasing number of abnormal cells and the possible progression to ATL.  相似文献   

13.
Antiretroviral therapy, antibody and CD8+ T cell-mediated responses targeting human immunodeficiency virus-1 (HIV-1) exert selection pressure on the virus necessitating escape; however, the ability of CD4+ T cells to exert selective pressure remains unclear. Using a computational approach on HIV gag/pol/nef sequences and HLA-II allelic data, we identified 29 HLA-II associated HIV sequence polymorphisms or adaptations (HLA-AP) in an African cohort of chronically HIV-infected individuals. Epitopes encompassing the predicted adaptation (AE) or its non-adapted (NAE) version were evaluated for immunogenicity. Using a CD8-depleted IFN-γ ELISpot assay, we determined that the magnitude of CD4+ T cell responses to the predicted epitopes in controllers was higher compared to non-controllers (p<0.0001). However, regardless of the group, the magnitude of responses to AE was lower as compared to NAE (p<0.0001). CD4+ T cell responses in patients with acute HIV infection (AHI) demonstrated poor immunogenicity towards AE as compared to NAE encoded by their transmitted founder virus. Longitudinal data in AHI off antiretroviral therapy demonstrated sequence changes that were biologically confirmed to represent CD4+ escape mutations. These data demonstrate an innovative application of HLA-associated polymorphisms to identify biologically relevant CD4+ epitopes and suggests CD4+ T cells are active participants in driving HIV evolution.  相似文献   

14.
Persistent human immunodeficiency virus type 1 (HIV-1) infection of resting CD4+ T cells, unaffected by antiretroviral therapy (ART), provides a long-lived reservoir of HIV infection. Therapies that target this viral reservoir are needed to eradicate HIV-1 infection. A small-animal model that recapitulates HIV-1 latency in resting CD4+ T cells may accelerate drug discovery and allow the rational design of nonhuman primate (NHP) or human studies. We report that in humanized Rag2−/− γc−/− (hu-Rag2−/− γc−/−) mice, as in humans, resting CD4+ T cell infection (RCI) can be quantitated in pooled samples of circulating cells and tissue reservoirs (e.g., lymph node, spleen, bone marrow) following HIV-1 infection with the CCR5-tropic JR-CSF strain and suppression of viremia by ART. Replication-competent virus was recovered from pooled resting CD4+ T cells in 7 of 16 mice, with a median frequency of 8 (range, 2 to 12) infected cells per million T cells, demonstrating that HIV-1 infection can persist despite ART in the resting CD4+ T cell reservoir of hu-Rag2−/− γc−/− mice. This model will allow rapid preliminary assessments of novel eradication approaches and combinatorial strategies that may be challenging to perform in the NHP model or in humans, as well as a rigorous analysis of the effect of these interventions in specific anatomical compartments.  相似文献   

15.
16.
HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion.  相似文献   

17.
18.

Background

Despite inducing a sustained increase in CD4+ T cell counts, intermittent recombinant IL-2 (rIL-2) therapy did not confer a better clinical outcome in HIV-infected patients enrolled in large phase III clinical trials ESPRIT and SILCAAT. Several hypotheses were evoked to explain these discrepancies. Here, we investigated the impact of low and high doses of IL-2 in Rhesus macaques of Chinese origin infected with SIVmac251 in the absence of antiretroviral therapy (ART).

Results

We demonstrated that rIL-2 induced a dose dependent expansion of CD4+ and CD8+ T cells without affecting viral load. rIL-2 increased CD4 and CD8 Treg cells as defined by the expression of CD25highFoxP3+CD127low. We also showed that rIL-2 modulated spontaneous and Fas-mediated CD4+ and CD8+ T cell apoptosis. The higher dose exhibited a dramatic pro-apoptotic effect on both CD4+ and CD8+ T cell populations. Finally, all the animals treated with rIL-2 developed a wasting syndrome in the month following treatment simultaneously to a dramatic decrease of circulating effector T cells.

Conclusion

These data contribute to the understanding of the homeostatic and dosage effects of IL-2 in the context of SIV/HIV infection.  相似文献   

19.
Tony Y. Hu 《Proteomics》2016,16(13):1947-1948
Comparative proteomics is increasingly used to detect biomarkers and therapeutic targets that differ between healthy and diseased populations; however, differences in posttranslational modifications have received less attention. In this issue, Yang et al. (Proteomics 2016, 16, 1872–1880) present data indicating that a glycoproteomics approach can detect N‐glycosylated membrane protein differences between non‐HIV‐infected and latently infected human CD4+ T‐cell lines, identifying 172 proteins differentially expressed by these cells. Latently infected CD4+ T cells are thought to represent the major barrier to eventual HIV cure, but do not express detectable levels of viral protein and have not been shown to express biomarkers that can distinguish them from the vastly more abundant uninfected CD4+ T‐cell population. The findings of Yang et al. suggest that glycoproteomic analyses may have untapped potential to identify novel biomarkers and therapeutic targets in cell populations not readily distinguishable be standard proteomic analyses.  相似文献   

20.
As HIV infected individuals live longer, the prevalence of HIV associated neurocognitive disorders is increasing, despite successful antiretroviral therapy. CD14+CD16+ monocytes are critical to the neuropathogenesis of HIV as they promote viral seeding of the brain and establish neuroinflammation. The mechanisms by which HIV infected and uninfected monocytes cross the blood brain barrier and enter the central nervous system are not fully understood. We determined that HIV infection of CD14+CD16+ monocytes resulted in their highly increased transmigration across the blood brain barrier in response to CCL2 as compared to uninfected cells, which did not occur in the absence of the chemokine. This exuberant transmigration of HIV infected monocytes was due, at least in part, to increased CCR2 and significantly heightened sensitivity to CCL2. The entry of HIV infected and uninfected CD14+CD16+ monocytes into the brain was facilitated by significantly increased surface JAM-A, ALCAM, CD99, and PECAM-1, as compared to CD14+ cells that are CD16 negative. Upon HIV infection, there was an additional increase in surface JAM-A and ALCAM on CD14+CD16+ monocytes isolated from some individuals. Antibodies to ALCAM and JAM-A inhibited the transmigration of both HIV infected and uninfected CD14+CD16+ monocytes across the BBB, demonstrating their importance in facilitating monocyte transmigration and entry into the brain parenchyma. Targeting CCR2, JAM-A, and ALCAM present on CD14+CD16+ monocytes that preferentially infiltrate the CNS represents a therapeutic strategy to reduce viral seeding of the brain as well as the ongoing neuroinflammation that occurs during HIV pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号